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Abstract. Modeling scalar transport by advection and diffusion in multiscale porous structures is a challenging problem,
particularly in the preasymptotic regimes when non-Fickian effects are prominent. Mathematically, one of the main difficulties is to
obtain macro-scale models from the homogenization of conservation equations at micro-scale when epsilon, the ratio of characteristic
lengthscales between the micro- and macro-scale, is not extremely small compared to unity. Here, we propose the basis of a
mathematical framework to do so. The focal idea is to decompose the spatial domain at pore-scale into a set of N subdomains to
capture characteristic times associated with exchanges between these subdomains. At macro-scale, the corresponding representation
consists of a system of N coupled partial differential equations describing the transport of the spatially averaged scalar variable.
Besides the framework, we also compare numerically the results of our models to a complete resolution of the problem at the
pore-scale, which shows great promises for capturing preasymptotic regimes, non-Fickian transport and going toward finite-epsilon
homogenization.
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1. Introduction. In most structures displaying multiscale heterogeneities, such as porous media, the
complexity of the geometry often prevents the computation of conservation laws at the smallest scales. A
standard solution to this consists in filtering out the high-frequency fluctuations contained in the microscale
details and adopting a homogenized point of view. In porous media, a famous example of one such model is
Darcy’s law describing momentum transport using the gradient of the spatially averaged pressure, a filtration
velocity and a permeability. Obtaining the average equations directly from fundamental principles at the
microscale can be performed using a number of mathematical approaches, including homogenization theories
(HTs [30, 46, 5, 48]) often based on multiscale asymptotics (MA) and the volume averaging theory (VAT
[52, 26]). For linear problems and locally periodic structures, VAT and HT often yield very similar macroscale
equations in which effective parameters, such as the permeability, can be calculated by solving closure problems
in a unit-cell.

With these two techniques, the macroscale model represents an asymptotic limit of the partial differential
equations describing conservation laws at the microscale. For MA, this is formalized by studying a sequence of
problems in the limit where the ratio between the microscopic and macroscopic lengthscales, ε, goes to zero.
Constraints regarding the scaling of dimensionless numbers are also necessary in order to further account for
the fact that a real physical system is associated with only one finite value of ε. To illustrate this point, consider
Taylor’s dispersion of a solute in a fluid flowing through a tube (Poiseuille velocity profile) of radius R and
length L, with a cross-section average velocity 〈v〉 and a molecular diffusion coefficient D. In this configuration,
the standard homogenized description is an advection-dispersion equation with a dispersion coefficient that
depends on the square of the Péclet number (dimensionless time t′ = tR2

/D and space x′ = x/R). This result,
however, is only valid asymptotically when each solute molecule has had time to visit the whole section of the
tube before reaching its end (more details about Taylor’s dispersion in [50, 2, 3] and about the convergence
in [12, 55, 54]). This constraint can be expressed in terms of the characteristic time for radial diffusion, R2

/D,
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which must be much smaller than the time for longitudinal advection, L/〈v〉. In dimensionless form, we can write
this constraint as εPe � 1 where ε = R/L and the Péclet number is defined as Pe = 〈v〉R/D. For a finite value
of ε, this means that we must have Pe � ε−1 and that the homogenized model will not describe accurately
transport when the Péclet number is too large, i.e. when Pe = O (ε−n) with n > 1. Overcoming this limitation
and deriving homogenized models that hold for large Péclet numbers and any finite value of ε is an important
challenge in applied mathematics, one that remains unsolved.

In this paper, we propose an idea to do so and develop the corresponding mathematical framework using
the VAT, which is based on a domain decomposition of the microscale domain. The focal concept is that the
domain of interest can be decomposed into a finite set of subdomains spanning the whole domain and that the
number of subdomains, N , can be used to control the small parameter, therefore relaxing constraints in the
standard HT or VAT. For example, for the case of Taylor’s dispersion, we could decompose the fluid in the
tube into a nested set of co-axial tubes. Our method would lead to a macroscale representation with a system
of N coupled equations, each equation describing the average concentration within each portion of the tube.
The idea underlying this decomposition is that the homogenized model may now hold when each molecule of
solute has had time to visit each subdomain independently, not the whole fluid phase. For a given value of
the diffusion coefficient, this time depends directly on the size of these subdomains, which is controlled by N .
The constraint would now be that the time for radial diffusion within each subdomain, R2

N2D , must be much
smaller than the longitudinal time for advection within each subdomain. For each subdomain α, this yields
the inequality ε

NPe(α) � 1, with the Pe(α) the Péclet number associated with the subdomain α, so that we

need max
α

(
ε
NPe(α)

)
� 1 instead of εPe� 1. The difference between these two expressions is that, for a finite

value of ε, we can define the small parameter as δ = ε
N , which in theory can be made as small as needed by

increasing the number of subdomains, N . This can be extended to any locally periodic heterogeneous material
where the unit-cell is decomposed into a set of N subdomains. Of course, this is just the intuitive idea of our
developments and we will study the effect of N in more detail numerically in model cases.

Another angle on this problem emerges from the consideration of real systems, which we know often display
non-Fickian effects at the macroscale. For example, breakthrough curves describing the response of a geological
formation to an impulse concentration often feature tailing effects that cannot be captured by an advection-
dispersion equation ([33, 7, 6, 8, 25, 17, 15]). This type of behavior is often attributed to heterogeneities
at various scales, for instance it will occur when the properties of the medium, for instance the diffusion
or permeability coefficients, display distributions with large variances. Further, boundary conditions, non-
linearities, source terms, topological effects or transient phenomena can generate or amplify non-equilibrium
effects –large gradients at the microscale– leading to non-Fickian transport. Several approaches ([16, 36]) are
used to describe these phenomena, including stochastic ([23]), non-local ([31]), higher-order, multi-rate mass
transfer (MRMT [27, 4, 53]) and multi-continua models (e.g. mobile-mobile, mobile-immobile, dual-porosity or
dual-permeability). For multi-rate mass transfer and multi-continua models, the central point is the introduction
of characteristic times that describe exchanges between different subdomains at the microscale by coupling
equations representing each phase separately, as is the case of our approach. However, a mathematical basis, as
the one associated with homogenization theories and upscaling, defining clearly the contours of such models is
still lacking.

Several non-Fickian transport models have been obtained using both the multiscale asymptotics and volume
averaging theories, but these only apply to specific cases and lack generality. For instance, mobile-immobile
models have been developed using HT in the case where the unit-cell contains two different domains that
differ by the value of the diffusion coefficients ([30, 29]). The approach relies on the constraint that these
diffusion coefficients are several orders of magnitude different, which is formalized using a scaling of the ratio
between both diffusion coefficients in ε. With the VAT, formulations with two equations (one for each domain,
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and exchange terms between the two) have been obtained by treating the case of two phases connected via
transmission (boundary) conditions ([1, 32, 14, 13, 35, 38, 44, 20]). Such models seem to be more general as
non-equilibrium effects can be postulated as a working hypothesis without the need to identify a priori the
origin of the gradients. These could originate from a particular scaling of dimensionless numbers, but also from
non-linearities, boundary, initial or reactive conditions. Another important aspect of these two-equation models
obtained using VAT is that they: (1) feature counter-intuitive (non-diagonal) coupling terms for the advective
and diffusive operators, which are not present in heuristic MRMT models and (2) they can be easily extended
to many situations such as mobile/mobile or reactive conditions, which is not necessarily the case of MRMT
because of the lack of link with the microscale physics.

One of the limitations of the VAT approach, which we overcome in this paper, is that there exists no general
theory that deals with any number of subdomains, as is the case for empirical MRMT models ([4]). Further, the
non-equilibrium approach with the two-equation model is mostly used when two distinct physical phases (when
the micro-scale is the pore-scale) or regions (when the micro-scale is the Darcy-scale in heterogeneous systems)
can be identified ([44]), which is limiting. An important question is therefore: can we still apply the same idea
and perform the domain decomposition independently of the number of physical phase or region in order to
derive a theory that overcomes the limitations associated with finite-ε problems and scalings of dimensionless
numbers? For instance, it was shown for momentum transport that even one physical phase can be decomposed
into two fluids ([47]). Of course, the problem for momentum transport is not the same as the one for scalar
transport that we study here; however, this is a clue suggesting that there is not necessarily a link between the
number of physical phases and the number of subdomains that is relevant for upscaling.

Here, our goal is to develop a sound physical and mathematical background for models containing any
number N of subdomains. We will also look at toy problems to figure out if there is hope that this may be
used to overcome limitations of standard homogenized representations. For simplicity, we focus on a generic
linear advection-diffusion problem of a scalar quantity in a locally periodic medium, this problem having direct
applications in a number of important problems such as solute transport in heterogeneous multiscale materials
(e.g. porous or biological media), heat transfer in composites or flow in large-scale geological formations. We
first define (Section 2) the microscale problem and corresponding operator notations. We then use a modified
form of the VAT in Section 3 to derive a macroscale model for any number N of subdomains. Finally, we
go on to test our approach for model dispersion problems (Section 4) and compare our results for two- and
three-equation models with direct numerical simulation at the microscale.

2. Definitions and microscale problem.

2.1. Problem definition and notations. The spatial domain of interest is a set Ω ⊂ Rn that is char-
acterized by a lengthscale L and boundary ∂Ω. This domain is locally periodic with unit-cell Y , which has
dimensions `1×· · ·×`n and is characterized by a lengthscale ` (a mean value of `i∈[1,n] for instance). We further
decompose Y into N subdomains Y (α) with α ∈ [1, N ]. The interior boundary of each subdomain Y (α) is noted
∂Y (α) and boundaries between subdomains Y (α) and Y (β) are noted ∂Y (αβ) = ∂Y (α) ∩ ∂Y (β). The domain
decomposition extends to the entire domain Ω by periodicity and we write Ω(α) =

⋃
Y (α). Similarly, we also

define ∂Ω(α) =
⋃
∂Y (α) and ∂Ω(αβ) =

⋃
∂Y (αβ).

We consider the following linear partial differential equation

(2.1) ∂tu+ Lu = 0 in Ω× R,

where L is an advection-diffusion operator such that

Lu ≡ v (x) ·∇u−∇ · (A (x) ·∇u) .(2.2)
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Fig. 2.1: The picture on the left-hand side shows schematics of a domain, Ω ⊂ R2, the unit-cell, Y , decomposed
into N = 8 subdomains, Y (α). The picture on the right-hand side represents an example averaging volume V (x)
centered at point x, the vector pointing within the averaging volume, ξ = r − x, and the center of unit-cell i,
Xi.

We do not detail the boundary conditions on ∂Ω here as they are not needed for the formal upscaling develop-
ments. Alternatively, this can be written in indicial form as

(2.3) Lu = vi (x) ∂iu− ∂i (Aij (x) ∂ju) ,

with the summation convention over repeated indices. The velocity field v (x) satisfies the incompressibility
condition, ∇ ·v = 0. A (x) is a periodic symmetric coercive dyadic field. For simplicity, we treat the variability
in space implicitly in the remainder of this paper and simply write v and A instead of v (x) and A (x). We also
define a flux operator J such that

(2.4) J u ≡ vu− A ·∇u,

and Lu = ∇ ·J u.
Finally, we consider the equivalent domain decomposition problem with transmission boundary conditions,

∂tu
(α) + L(α)u(α) = 0 in Ω(α) × R,(2.5)

JuK(αβ)
= 0 on ∂Ω(αβ) × R,(2.6)

n(αβ) · JJ uK(αβ)
= 0 on ∂Ω(αβ) × R,(2.7)

where α, β ∈ [1, N ] with α 6= β, JgK(αβ) ≡ g(α) − g(β) is a jump notation and

(2.8) L(α) ≡ v(α) ·∇u(α) −∇ ·
(
A(α) ·∇u(α)

)
,
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with v(α) and A(α) are restrictions of, respectively, v and A from Ω to Ω(α). This formulation is completely
equivalent to Eq 2.1 but is going to be the starting point for developing the N -equation formulation.

2.2. Averaging notations and perturbation decomposition. To homogenize the transport equations,
we first need to define the spatial averaging operator. The most general formulation is a spatial convolution as
discussed in [39, 40, 43, 42, 41, 21, 34]. The average of u(α) evaluated at point x reads

(2.9)
〈
u(α)

〉∣∣∣
x
≡
∫
Rn
m (x− r)χ(α) (r)u (r) dr,

that we can simply write as

(2.10)
〈
u(α)

〉∣∣∣
x
≡ m ∗

(
χ(α)u

)∣∣∣
x
,

with m a kernel normalized so that
∫
Rn m = 1 and χ(α) the fluid-phase indicator function, whose value is 1 in

the subdomain α and 0 otherwise. In applying the convolution, there is of course an issue in the vicinity of ∂Ω.
There are a number of ways this problem can be solved (see for instance [37]), at least formally.

The role of the convolution is to act as a low-pass filter, eliminating lengthscales that are smaller or equal
to the size of the unit-cell `. The definition of the averaging operator using convolutions is fundamental to
control properties of the average fields, the smoothness in particular, by adequately choosing the kernel m. For
simplicity and because this is not the subject of this paper, we assume that the averaging operator is ideal with
regard to the volume averaging procedure (see [21] for more details) i.e. that

1. m is symmetric regarding each spatial direction,
2. m ∈ Ck (Rn) with k the order of the closure and of the Taylor series expansions used in volume

averaging,
3. the averaging operator, 〈•〉, is idempotent and if g is periodic with unit-cell Y then

〈
g
〈
u(α)

〉〉∣∣
x

=

〈g〉|x
〈
u(α)

〉∣∣
x
,

4. if g is periodic with unit-cell Y , then m ∗ g (x) = mu ∗ g (x) with mu =
∏n
i=1R (xi) the standard

averaging kernel and R the one-dimensional rectangular function.
We now define the porosity of the domain α as φα ≡ 〈1〉|x = m ∗ χ(α) (x). Since χ(α) is periodic, we also have
φα = mu ∗ χ(α) (x) using Property 4 above. The intrinsic average of u(α) is

(2.11) Uα|x ≡
m ∗

(
χ(α)u

)
m ∗ χ(α)

(x) =
m ∗

(
χ(α)u

)
φα

(x) ,

so that we have the relationship

(2.12) Uα = φ−1
α

〈
u(α)

〉
,

and can define a pertubation decomposition as

(2.13) u(α) ≡ Uα + ũ(α).

The idea in using such a perturbation is to separate the spatial frequencies of the field, with Uα containing only
low frequency variations.

3. Upscaling via volume averaging. The first step of the method consists in applying the averaging
operator to each subdomain. Since all subdomains are immobile, this operation yields, for any point in Ω, the
following average equation for each subdomain α,

(3.1) ∂tUα + φ−1
α

〈
L(α)u(α)

〉
= 0.
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3.1. Perturbations. The second step is the subtraction of Eq 3.1 from Eq 2.5. This operation yields the
following perturbation equations, for any point in Ω(α)

(3.2) ∂tũ
(α) + L̃(α)u(α) = 0,

where the notation L̃(α)u(α) ≡ L(α)u(α) − φ−1
α

〈
L(α)u(α)

〉
is a generalization of the perturbation notation for u

to partial differential operators. Upon assuming quasi-stationarity of this problem (this issue is not discussed
in detail here as it is a strandard assumption used in most techniques [52, 10, 5] and can also be relaxed by
introducing time convolutions [20, 18, 19]) and using the perturbation decomposition Eq 2.13, we can simplify
the problem as

(3.3) L̃(α)ũ(α) = −L̃(α)Uα,

along with the boundary conditions on ∂Ω(αβ),

JũK(αβ)
= − (Uα − Uβ) ,(3.4)

n(αβ) · JJ ũK(αβ)
= −n(αβ) ·

(
J (α)Uα −J (β)Uβ

)
.(3.5)

3.2. Approximate form of the solution. The next step is to postulate an approximate form of the
perturbation problem. Considering average terms as sources in the perturbation equations, Eqs 3.3 to 3.5,
suggests an approximation in the form

(3.6) ũ(α) =
(
a

(α)
j − δαj

)
Uj + b

(α)
j ·∇Uj + h.o.t.,

where we have used the summation convention over repeated indices j, δαj is the Kronecker symbol and h.o.t.
is an abbreviation for higher-order terms. In these equations, a(α)

j are scalars and b
(α)
j are first-order tensors.

We therefore construct our approximate solution for the scalar field as

(3.7) u(α) = a
(α)
j Uj + b

(α)
j ·∇Uj ,

and for the flux, we write

(3.8) J (α)u(α) =
(
J (α)a

(α)
j

)
Uj +

(
J (α)b

(α)
j − Aa

(α)
j

)
· ∇Uj .

3.3. Closure problems. We then inject Eqs 3.7 and 3.8 into Eq 3.3. Since, by construction, Eqs 3.7 must
be correct for any value of Uj and ∇Uj , we can identify each problem associated with Uj and ∇Uj to obtain a set
of problems that are usually termed closure problems. In fact, this is exactly for this reason that we postulated
this form of perturbation. For terms corresponding to Uj , we have

(3.9) L̃(α)a
(α)
j = 0

with conditions

JajK
(αβ)

= 0, on ∂Y (αβ)(3.10)

n(αβ) · JJ ajK
(αβ)

= 0, on ∂Y (αβ)(3.11) 〈
a

(α)
j

〉
= δαjφα,(3.12)

Periodicity.(3.13)
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For terms corresponding to ∇Uj , we find a coupling between both closure variables b(α)
j and a(α)

j that stems
from derivatives of the product a(α)

j Uj . This yields

(3.14) L̃(α)b
(α)
j = −J̃ (α)

a
(α)
j + ∇̃ ·

(
A(α)a

(α)
j

)
,

with

JbjK
(αβ)

= 0, on ∂Y (αβ)(3.15)

n(αβ) · JJbjK
(αβ)

= n(αβ) · JAajK(αβ)
, on ∂Y (αβ)(3.16) 〈

b
(α)
j

〉
= 0,(3.17)

Periodicity,(3.18)

where we have used a perturbation notation generalized to operators, e.g.

(3.19) J̃
(α)
a

(α)
j = J (α)a

(α)
j − φ−1

α

〈
J (α)a

(α)
j

〉
.

Also, note the following important properties of the closure problems:
1. In the first set of closure problems, the equality

∑
j a

(α)
j = 1 can be easily obtained by summing up all

the different closure problems.
2. In the second set of closure problems, if A is continuous then n(αβ) · JAajK(αβ)

= 0.
Formally, we can condense these equations as

(3.20)

 u(1)

...
u(N)

 =


a

(1)
1 · · · a

(1)
N

...
. . .

...
a

(N)
1 · · · a

(N)
N


 U1

...
UN

+


b

(1)
1 · · · b

(1)
N

...
. . .

...
b

(N)
1 · · · b

(N)
N

 ·
 ∇U1

...
∇UN


and the closure problems asL̃

(1)

. . .
L̃(N)



a

(1)
1 · · · a

(1)
N

...
. . .

...
a

(N)
1 · · · a

(N)
N

 = 0,(3.21)

L̃
(1)

. . .
L̃(N)




b
(1)
1 · · · b

(1)
N

...
. . .

...
b

(N)
1 · · · b

(N)
N

(3.22)

=


−J̃ (1)

a
(1)
1 + ∇̃ ·

(
A(1)a

(1)
1

)
· · · −J̃ (1)

a
(1)
N + ∇̃ ·

(
A(1)a

(1)
N

)
...

. . .
...

−J̃ (N)
a

(N)
1 + ∇̃ ·

(
A(N)a

(N)
1

)
· · · −J̃ (N)

a
(N)
N + ∇̃ ·

(
A(N)a

(N)
N

)
 ,

with the same boundary and integral conditions. In this system, each line corresponds to a subdomain α while
columns correspond to the source terms Uj and ∇Uj .
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3.4. Eliminating integro-differential operators in the closure problems. The operator L̃(α)♦ =
L(α)♦− φ−1

α

〈
L(α)♦

〉
is, by definition, integro-differential with L(α)♦ partial differential and

〈
L(α)♦

〉
integral.

However,
〈
L(α)♦

〉
is uniformly constant over each unit-cell because of the periodic boundary conditions. We

can therefore eliminate the integral part of the operator using simple changes of the unknown functions.

3.4.1. First closure problem. The first closure problem can be written as a function of the coefficients
hαj ≡

〈
L(α)a

(α)
j

〉
. Eq 3.21 reads

(3.23)

L
(1)

. . .
L(N)



a

(1)
1 · · · a

(1)
N

...
. . .

...
a

(N)
1 · · · a

(N)
N

 =

φ
−1
1

. . .
φ−1
N


h11 · · · h1N

...
. . .

...
hN1 · · · hNN

 ,

with boundary conditions on ∂Y (αβ)

JajK
(αβ)

= 0,(3.24)

n(αβ) · JJ ajK
(αβ)

= 0,(3.25) 〈
a

(α)
j

〉
= φαδαj ,(3.26)

Periodicity.(3.27)

All the constant terms hαj are not independent and before going on with the changes of unknown functions, we
first need to explicit the relationships between hαj . Considering the sum

(3.28)
N∑
α=1

hαj =

N∑
α=1

〈
L(α)a

(α)
j

〉
=

N∑
α=1

〈
∇ · J (α)a

(α)
j

〉
and using the divergence theorem, it is straightforward that

∑N
α=1 hαj = 0 because of the continuity of the

fluxes between the different subdomains and the periodic boundary conditions. Therefore, we can write h1j =

−∑N
α=2 hαj and

(3.29)

h11 · · · h1N

...
. . .

...
hN1 · · · hNN

 =


−∑N

α=2 hα1 · · · −∑N
α=2 hαN

h21 · · · h2N

...
. . .

...
hN1 · · · hNN

 .

With (N − 1)×N unknowns for hαj , we now introduce the following decomposition

(3.30)


a

(1)
1 − 1 · · · a

(1)
N

...
. . .

...
a

(N)
1 − 1 · · · a

(N)
N

 =


d

(1)
2 · · · d

(1)
N

...
. . .

...
d

(N)
2 · · · d

(N)
N


h21 · · · h2N

...
. . .

...
hN1 · · · hNN

 .

Further injecting Eq 3.30 into Eq 3.23, we have that d(α)
j solves

(3.31)

L
(1)

. . .
L(N)



d

(1)
2 · · · d

(1)
N

...
. . .

...
d

(N)
2 · · · d

(N)
N

 =


−φ−1

1 · · · −φ−1
1

φ−1
2

. . .
φ−1
N

 ,
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with boundary conditions for d(α)
j that are unchanged compared to a(α)

j , i.e. continuity inside the unit-cell and
periodicity on the outside boundaries. Since integral terms have been removed and the problem is now purely
differential on d(α)

j , this can be solved by standard numerical methods.
However, the values of hαj are still unknown and to calculate them we need to consider the average condi-

tions. For each column in Eq 3.31, the variables d(α)
j are defined uniquely up to a constant (see Section 3.4.3

for detail about existence and uniqueness) so that we must use an average condition to have a unique solution.
We choose the average conditions

〈
d

(1)
j

〉
= 0 to fix this constant. This choice is compatible with the average

conditions applying to a(1)
j , as we have from averaging the first line in Eq 3.30 that

〈
a

(1)
j

〉
= φ1δ1j . The rest

of the average conditions on a(α>1)
j , i.e.

〈
a

(α)
j

〉
= φαδαj , are then used to calculate the exchange coefficients.

Averaging Eq 3.30 and removing the first line, which has already been used, we find the relationship

(3.32)

h22 · · · h2N

...
. . .

...
hN2 · · · hNN

 =


〈
d

(2)
2

〉
· · ·

〈
d

(2)
N

〉
...

. . .
...〈

d
(N)
2

〉
· · ·

〈
d

(N)
N

〉

−1φ2

. . .
φN

 ,

that can be used to calculate the N2 exchange coefficients hαj when combined with h1j = −∑N
α=2 hαj and

hα1 = −∑N
j=2 hαj .

3.4.2. Second closure problem. We proceed in a similar way for the second closure problem. This may
be written as

L
(1)

. . .
L(N)




b
(1)
1 · · · b

(1)
N

...
. . .

...
b

(N)
1 · · · b

(N)
N

(3.33)

=

φ
−1
1

. . .
φ−1
N


V11 · · · V1N

...
. . .

...
VN1 · · · VNN



+


−J̃ (1)

a
(1)
1 + ∇̃ ·

(
A(1)a

(1)
1

)
· · · −J̃ (1)

a
(1)
N + ∇̃ ·

(
A(1)a

(1)
N

)
...

. . .
...

−J̃ (N)
a

(N)
1 + ∇̃ ·

(
A(N)a

(N)
1

)
· · · −J̃ (N)

a
(N)
N + ∇̃ ·

(
A(N)a

(N)
N

)
 ,

with

Vαj =
〈
L(α)b

(α)
j

〉
.(3.34)

We use the following change of unknown functions
9




b

(1)
1 · · · b

(1)
N

...
. . .

...
b

(N)
1 · · · b

(N)
N

 =


e

(1)
1 · · · e

(1)
N

...
. . .

...
e

(N)
1 · · · e

(N)
N



+


d

(1)
2 · · · d

(1)
N

...
. . .

...
d

(N)
2 · · · d

(N)
N


V21 · · · V2N

...
. . .

...
VN1 · · · VNN

 .(3.35)

The idea here is to use the linearity of the operators in order to decompose the solution into two distinct parts
corresponding to different source terms in the equations. Here, e(α)

j are solutions of

(3.36)

L
(1)

. . .
L(N)




e
(1)
1 · · · e

(1)
N

...
. . .

...
e

(N)
1 · · · e

(N)
N

 = S̃,

with the average condition
〈
e

(1)
j

〉
= 0, continuity/jump conditions on boundaries and

(3.37) S̃ =


−J̃ (1)

a
(1)
1 + ∇̃ ·

(
A(1)a

(1)
1

)
· · · −J̃ (1)

a
(1)
N + ∇̃ ·

(
A(1)a

(1)
N

)
...

. . .
...

−J̃ (N)
a

(N)
1 + ∇̃ ·

(
A(N)a

(N)
1

)
· · · −J̃ (N)

a
(N)
N + ∇̃ ·

(
A(N)a

(N)
N

)
 .

Vαj can then be calculated by averaging Eq 3.35 and removing the first line to obtain

(3.38)

V21 · · · V2N

...
. . .

...
VN1 · · · VNN

 = −


〈
d

(2)
2

〉
· · ·

〈
d

(2)
N

〉
...

. . .
...〈

d
(N)
2

〉
· · ·

〈
d

(N)
N

〉

−1

〈
e

(2)
1

〉
· · ·

〈
e

(2)
N

〉
...

. . .
...〈

e
(N)
1

〉
· · ·

〈
e

(N)
N

〉
 ,

or equivalently, combined with Eq 3.32, we also have

(3.39)

V11 · · · V1N

...
. . .

...
VN1 · · · VNN

 = −

h11 · · · h1N

...
. . .

...
hN1 · · · hNN


φ
−1
1

. . .
φ−1
N



〈
e

(1)
1

〉
· · ·

〈
e

(1)
N

〉
...

. . .
...〈

e
(N)
1

〉
· · ·

〈
e

(N)
N

〉
 .

3.4.3. Solvability condition for the closure problems. The closure problems Eqs 3.31 and 3.36 are
not homogeneous. Because of the periodic boundary condition, there are strong constraints applying to the
source terms on the right-hand sides of these equations. Classical results of the analysis of elliptic equations
show that these problems are well-posed under the solvability condition:

(3.40)
∫
Y

Sj = 0.
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We can easily check that this is true for all the source terms in the closure problems. For dj , we have Sdj =

−φ−1
1 χ(1) + φ−1

j χ(j), for which it is trivial to show that
∫
Y
Sdj = 0. In the other closure problem, Eq 3.36, the

source terms, S̃, are perturbations in the form SMj =
∑
α

[
χ(α)M(α)

j −
∫
Y
χ(α)M(α)

j

]
that also verify

∫
Y
SMj = 0.

3.5. Average model. Eq 3.1 can be written as, for any point in Ω,

(3.41) φα∂tUα +
〈
∇ ·J (α)u(α)

〉
= 0.

3.5.1. Complete model. Injecting Eq 3.8 into Eq 3.41, we obtain

(3.42) φα∂tUα + Cαj ·∇Uj = Aαj : ∇∇Uj − hαjUj ,

with exchange coefficients

(3.43) hαj =
〈
L(α)a

(α)
j

〉
,

effective velocities

(3.44) Cαj =
〈
L(α)b

(α)
j

〉
−
〈
∇ ·
(
A(α)a

(α)
j

)〉
+
〈
J (α)a

(α)
j

〉
,

and dispersion tensors

(3.45) Aαj =
〈
A(α)a

(α)
j

〉
−
〈
J (α)b

(α)
j

〉
.

This problem can be written formally as

(3.46) ∂t

 φ1U1

...
φNUN

+ CN ·

 ∇U1

...
∇UN

 = AN :

 ∇∇U1

...
∇∇UN

−
h11 · · · h1N

...
. . .

...
hN1 · · · hNN


 U1

...
UN

 ,

with

(3.47) CN =

C11 · · · C1N

...
. . .

...
CN1 · · · CNN

 and AN =

A11 · · · A1N

...
. . .

...
AN1 · · · ANN

 .

Since we consider a homogeneous porous medium here, we can also write this in a conservative form as

(3.48) ∂t

 φ1U1

...
φNUN

+ ∇ ·

CN
 U1

...
UN


 = ∇ ·

AN ·
 ∇U1

...
∇UN


−

h11 · · · h1N

...
. . .

...
hN1 · · · hNN


 U1

...
UN

 .

3.5.2. Discussion. Problem 3.48 is a system of convection-diffusion-reaction equations with constant
coefficients, so that standard results of partial derivative equations analysis show that it admits a unique global
in time solution as soon as the diffusion matrix AN satisfies the coercivity assumption ξtANξ > α|ξ|2 for any
vector ξ of RN×n with α > 0 (see e.g. [11] pp.340-341 and references therein). Thus far, we have not been
able to prove this property for the general expression of matrices AN given in terms of the closure problems.

11



However, since AN is a constant real matrix, it may be checked a posteriori each time for the specific problem
at hand. With this respect, note that AN may be replaced in the coercivity relation by its symmetric part
1/2(AN +AtN ), which is diagonalizable. In practice, the issue of coercivity thus boils down to searching for the
lowest eigenvalue of a symmetric real matrix, and many packages are available for this purpose.

Independently from the issue of well-posedness, the non-diagonal terms in CN and AN may yield unphysical
results, such as negative concentrations or values outside initial bounds (see an example in Section 4.5). Physi-
cally, these issues stem from the fact that the derivation of the model above, Eq 3.46, is based on a particular
form of the solution Eq 3.7 and a set of hypotheses that may not be correct for any initial/boundary condition
or any point in the domain. The result is that the macroscale model may yield negative concentrations, so
that the model needs to be used carefully. Some of the hypotheses used in deriving the closure Eq 3.7 may
not always be valid and examples for which the model yields non-physical results can be easily constructed for
specific choices of initial conditions (see an example in Section 4.5).

The question of coercivity is a major one, as it conditions the well-posedness of the problem. In practical
applications, if the coercivity is not verified, regularization is one way to resolve the issue. For instance, one may
use an approximant of AN that has all the required properties to obtain a well-posed problem e.g. the nearest
symmetric positive semidefinite matrix to AN ([28]), possibly constrained to respect important properties, such
as to keep the sum of all the terms

∑
i,j Aij identical. In the one-dimensional numerical examples treated

in Section 4, there is no need for so elaborate approaches as the coercivity of the matrix was obtained for
all the cases presented. However, we emphasize that this needs to be dealt with carefully and that either a
demonstration of general coercivity or a robust approach to correct it will be needed for the general case.

The issue about respecting initial bounds is not as important as, in many cases, the primary goal is to
obtain an accurate approximation of the signal, even if it means breaking min/max principles. This problem
is not specific to the VAT, but rather stems from the multi-rate macroscopic formulation and was already
observed in [22]. In many cases, obtaining a slightly negative concentration may be acceptable especially if this
vanishes in the long-time limit [22]. In Section 4.5, we provide examples of negative solutions that still capture
all the important features of the scalar field. If this cannot be tolerated for a particular problem, a variety of
approaches could be used. As a very simple example, we can diagonalize the velocity and dispersion matrices
via lumping as

(3.49)

C11 · · · C1N

...
. . .

...
CN1 · · · CNN

→
C1

. . .
CN

 and

A11 · · · A1N

...
. . .

...
AN1 · · · ANN

→
φ1A

∗

. . .
φNA∗



with Cα =
∑
j Cαj and A∗ =

∑
α,j Aij . Example solutions with this simplification are presented in Section 4.5.

Another approach could be to weight non-diagonal terms with a regularizing function that eliminates the non-
diagonal terms when Uj is getting close to initial bounds (zero for example). Similar approaches are used for
diffusion reaction models with cross-diffusion in biological systems ([51]) or multicomponent mass transport
([49, 24]). A considerable issue, however, is that the system becomes non-linear, making computations of the
solutions a lot more complicated.

3.5.3. Theoretical comparison with MRMT. How is this model different from MRMT? Besides the
fact that, contrary to MRMTmodels, we have derived a direct link (the closure problems) between the microscale
geometry and the effective parameters, there are also differences in the macroscale form compared to MRMT
models. To better understand this, we consider the generic form from [4] that we straightforwardly extend to
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the mobile/mobile cases by allowing each phase to flow. With our formalism, this reads

(3.50) ∂t

 φ1U1

...
φNUN

+ ∇ ·

QN
 U1

...
UN


 = ∇ ·

DN ·
 ∇U1

...
∇UN


−

h11 · · · h1N

...
. . .

...
hN1 · · · hNN


 U1

...
UN

 ,

with

(3.51) QN =


〈
v(1)

〉
. . . 〈

v(N)
〉
 and DN =

φ1d1

. . .
φNdN

 .

The first striking difference is that CN and AN feature non-diagonal (coupling) terms, whereas the MRMT
model does not. From a theoretical point of view, this suggests that the model derived here is actually more
general as it contains additional couplings. The simplified diagonalized version of our model with Eq 3.49 is
almost identical to the MRMT. The only difference is that the values of the terms on the diagonal are not
necessarily the same. The most obvious example of this is for the velocities. Indeed, for QN the diagonal terms
correspond to the average physical velocity of each subdomain, whereas Cα contains additional terms.

4. Validation against direct numerical simulations.

4.1. Description of the geometries and microscale problems. As a toy problem, we consider scalar
transport in two-dimensional periodic arrays of 40 unit-cells (see Fig 4.1a). Each unit-cell (see Fig 4.1b-f)
consists of a fluid phase f with incompressible Stokes flow (see solutions for individual unit-cells in Fig 4.1g-i),

0 = −∇p+ µ∆v + ex in phase f,(4.1)
∇ · v = 0 in phase f,(4.2)

v = 0 on ∂Ωt, ∂Ωb and ∂Ωfni ,(4.3)
Periodicity on ∂Ωl and ∂Ωr.(4.4)

For the scalar transport problem, we have

∂tu
(f) + v · ∇u(f) =

1

Pe
∆u(f) in phase f,(4.5)

∂tu
(ni) =

Γ(ni)

Pe
∆u(ni), in the nodule ni,(4.6)

u(f) = u(ni) on ∂Ωfni ,(4.7)

nfni · ∇u(f) = nfni · Γ(ni)∇u(ni) on ∂Ωfni ,(4.8)
∂yu = 0 on ∂Ωt and ∂Ωb,(4.9)
u = 0 on ∂Ωl and ∂Ωr,(4.10)

u (x, y, t = 0) =
1

σ
√

2π
e−

(x−µ)2

2σ2 .(4.11)

We consider two classes of geometries for the unit-cell, one with a relatively large centered nodule and one
with two smaller nodules (dashed line in Fig 4.1). We impose Γ(nα) = 1.0 for the case with one nodule and
Γ(nβ) = 0.1, Γ(nγ) = 0.01 for the geometry with two nodules.
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∂Ωl ∂Ωr
∂Ωt

∂Ωb

1

(a) Macroscopic geometry

1

2

nα
f f

nα

12

3

1 1

nγnβ

f f

(b) 2 subdomains, center. (c) 2 subdomains, ellipse. (d) 2 subdomains.

1

2

f

3

nα f

1 2

nγ

f
nβ

(e) 3 subdomains, center. (f) 3 subdomains.

(g) velocity field, one nodule. (h) velocity field, one nodule. (i) velocity field, two nodules.

Fig. 4.1: Geometries of (a) the whole domain containing a total of 40 unit-cells. (b-f) Geometries of each
unit-cell with the one and two nodules configuration. The dashed lines correspond to the geometry while the
colors describe the subdomain decomposition. The letters f and n refer to the decomposition for the microscale
transport with, respectively, the fluid (f) and nodules (nα, nβ , nγ). The numbers 1, 2 and 3 correspond to the
subdomain decomposition for the macroscale model, which is independent from the fluid/nodule decomposition.
(g-i) The normalized x-component of the velocity field, vx

φ−1
f 〈vx〉

, for one and two nodules.

14



4.2. Macroscale problems. We consider the one-, two- and three-equation models for each geometry
(referred to as 1eq, 2eq and 3eq). For 1eq, the macroscale problem reads

(4.12) ∂tU + 〈v〉 ∂xU1eq = A?∂xxU1eq,

with A? the standard dispersion tensor (see [52, 45, 9]). For 2eq (Fig 4.1b, c and d), we have(
φ1 0
0 φ2

)
∂t

(
U2eq

1

U2eq
2

)
+

(
C11 C12

C21 C22

)
∂x

(
U2eq

1

U2eq
2

)
=

(
A11 A12

A21 A22

)
∂xx

(
U2eq

1

U2eq
2

)
−
(
h11 h12

h21 h22

)(
U2eq

1

U2eq
2

)
,(4.13)

and finally, for the 3eq (Fig 4.1e and f),φ1 0 0
0 φ2 0
0 0 φ3

 ∂t

U3eq
1

U3eq
2

U3eq
3

+

C11 C12 C13

C12 C22 C23

C13 C23 C33

 ∂x

U3eq
1

U3eq
2

U3eq
3


=

A11 A12 A13

A12 A22 A23

A13 A23 A33

 ∂xx

U3eq
1

U3eq
2

U3eq
3

−
h11 h12 h13

h21 h22 h23

h31 h32 h33

U3eq
1

U3eq
2

U3eq
3

 .(4.14)

We also consider the simplified diagonalized equations (as described in Section 3.5.2)(
φ1 0
0 φ2

)
∂t

(
US2eq

1

US2eq
2

)
+

(
C1 0
0 C2

)
∂x

(
US2eq

1

US2eq
2

)
=

(
φ1A

∗2eq 0
0 φ2A

∗2eq

)
∂xx

(
US2eq

1

US2eq
2

)
−
(
h11 h12

h21 h22

)(
US2eq

1

US2eq
2

)
,(4.15)

and finally, for the 3eq, φ1 0 0
0 φ2 0
0 0 φ3

 ∂t

US3eq
1

US3eq
2

US3eq
3

+

C1 0 0
0 C2 0
0 0 C3

 ∂x

US3eq
1

Us3eq2

US3eq
3


=

φ1A
∗3eq 0 0

0 φ2A
∗3eq 0

0 0 φ3A
∗3eq

 ∂xx

US3eq
1

US3eq
2

US3eq
3

−
h11 h12 h13

h21 h22 h23

h31 h32 h33

US3eq
1

US3eq
2

US3eq
3

 .(4.16)

For the initial condition, we impose U (x, t = 0) = 1
σ
√

2π
e−

(x−µ)2

2σ2 , for all models, this corresponding to the
initial condition of the microscale model in Section 4.1. For the boundary conditions, we have U (x = 0, t) = 0
and U (x = 40, t) = 0.

4.3. Numerical methods.

4.3.1. General description. Microscale (Section 4.1) and macroscale (Section 4.2) equations are solved
using standard finite element methods. Stokes flow at the microscale is solved on a P2/P1 Lagrange basis.
Microscale advection-diffusion equations for the direct numerical solution and the closure problems are solved on
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Fig. 4.2: Comparisons (geometry in Fig 4.1e) of non-diagonalized U3eq
2 and diagonalized US3eq

2 models (in
subdomain 2) for different values σ, the standard deviation of the initial condition, and (Pe = 300 and t = 1).

cubic Lagrange elements with streamline and crosswind diffusion. Macroscale equations are solved on quadratic
Lagrange elements without stabilization. The time discretization for direct numerical simulations and the
macroscale equations is implicit with the backward differentiation formula (BDF). For the resolution of linear
systems, we use the MUltifrontal Massively Parallel Sparse direct Solver (MUMPS).

4.4. Resolution algorithm. Firstly, we solve directly the microscale model (Section 4.1), this serving
as a reference for comparison with homogenized models. Secondly, we solve the homogenized problem with
the different models. To do so, we start by solving the closure problems for d and e over each unit-cell with
periodic boundary conditions (Fig 4.1, orange, yellow and blue corresponding to different subdomains). We
then use these fields to calculate the effective parameters and construct a an b (Section 3.4) for each value of
the Péclet number, Pe. For all cases presented, we verified that the dispersion matrices are coercive, so that
the problems are well-posed. Once we have calculated the values of the effective parameters as functions of Pe,
the macroscale models are solved to obtain Ui for one, two and three subdomains (Section 4.2). The accuracy
of each homogenized model can then be evaluated by comparing these results to those obtained from the direct
numerical simulations of the microscale model.

We will go one step further in the comparison by reconstructing the microscale fields from Ui and the closure
fields a an b. The first step in doing so is to extend the fields a an b, only defined over a single unit-cell, to the
entire domain by periodicity. The corrector-type results may then simply be written as

u1eq (x, y, t) = U1eq (x, t) + b (x, y) ∂xU1eq (x, t) ,(4.17)

u2eq (x, y, t) =

(
a1 (x, y)
a2 (x, y)

)(
U2eq

1 (x, t)

U2eq
2 (x, t)

)
+

(
b1 (x, y)
b2 (x, y)

)(
∂xU2eq

1 (x, t)

∂xU2eq
2 (x, t)

)
,(4.18)

u3eq (x, y, t) =

a1 (x, y)
a2 (x, y)
a3 (x, y)

U3eq
1 (x, t)

U3eq
2 (x, t)

U3eq
3 (x, t)

+

b1 (x, y)
b2 (x, y)
b3 (x, y)

∂xU3eq
1 (x, t)

∂xU3eq
2 (x, t)

∂xU3eq
3 (x, t)

 ,(4.19)

which can be directly compared to direct numerical simulations of u(f) and u(ni), that we simply write udns
over the entire unit-cell.

4.5. Results and discussion. To facilitate comparison of the two-dimensional fields from direct numerical
simulations, udns (x, y, t), with the one-dimensional fields from the macroscale equations, we project udns (x, y, t)

onto the x-axis and define uPdns (x, t) =
∫ 1

0
udns (x, y, t) dy. Although uPdns (x, t) still contains high-frequency
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Fig. 4.3: Comparisons (geometry in Fig 4.1e) of non-diagonalized U3eq and diagonalized US3eq models to uPdns

for Pe = 300 and Pe = 500 at t = 10.

fluctuations in x, it is one-dimensional and therefore can be easily compared to

UNeq (x, t) =
∑
i

φiUNeqi (x, t) ,

for the one-equation, U1eq, two-equation, U2eq, and three-equation U3eq models.

4.5.1. Preliminary aspects. In this first Section, we present ancillary results regarding the effect of the
initial condition, of matrix diagonalization and of the choice of domain decomposition. These aspects are not
fully explored here and only serve as a basis to understand and discuss the impact of the number of subdomains
on the results, which is studied in the remainder of Section 4.5.

We start by assessing the influence of the initial condition for the case with one nodule and Pe = 300.
Fig 4.2 presents U3eq

2 and US3eq
2 (geometry in Fig 4.1e) at time t = 1 for increasing values of the standard

deviation, σ, of the initial Gaussian signal. Results show that the smallest value of σ, which corresponds to
the strongest initial gradients of concentration, yields negative solutions for U3eq

2 as was already observed for
MRMT in [22]. We also see that this effect disappears when the gradients occur over a lengthscale that is much
larger than the unit-cell. This is because strong gradients are incompatible with assumptions in the VAT and,
therefore, may lead to unphysical results of the model. To understand this, let us construct a simple example
showing analytically how a two-domain decomposition can lead to negative solutions. We consider

(4.20) ∂t

(
φ1U1

φ2U2

)
+

(
C11 C12

C21 C22

)(
∂xU1

∂xU2

)
=

(
A11 A12

A21 A22

)(
∂xxU1

∂xxU2

)
−
(
h11 h12

h21 h22

)(
U1

U2

)
,

on R × R+∗ with initial conditions, U1 (x, t = 0) = 0 and U2 (x, t = 0) = U ref
2 e
− 1

2

(
x2

(Lδ)2
−1

)
. Here, L is a

characteristic lengthscale and δ is a small parameter, δ � 1. Let us consider the point x = Lδ, for which we
have U2 (Lδ, 0) = U ref

2 , ∂xU2 (Lδ, 0) = −U
ref
2

Lδ and ∂xxU2 (Lδ, 0) ≈ Uref
2

(Lδ)3
. Since δ � 1, we have

(4.21) φ1∂tU1 (Lδ, 0) ≈ A12
U ref

2

(Lδ)
3 .

Without loss of generality, we consider A12 < 0, so that ∂tU1 (Lδ, 0) < 0 and, with U1 (x, t = 0) = 0, U1 becomes
negative.
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Fig. 4.4: Comparisons of U2eq for the circular (Fig 4.1b) and elliptic (Fig 4.1c) domain decompositions to uPdns

Pe = 300 at t = 10.

One way to get rid of this issue consists in eliminating the non-diagonal terms in the dispersion matrix
and simplifying the problem as is done in Eq 4.16. In Fig 4.2, we plot the results for US3eq, Pe = 300 and
t = 1, as a function of σ. We see that, contrary to the model with non-diagonal terms, solutions always remain
non-negative. To further evaluate the effect of removing non-diagonal terms, we plot in Fig 4.3 U3eq and US3eq

(geometry in Fig 4.1e), for Pe = 300 and Pe = 500 at t = 10, and compare both fields to the reference uPdns.
Comparisons of US3eq with uPdns indicate that the simplified model fails in capturing the bimodal nature of the
signal for Pe = 300. However, it is difficult to evaluate further the relative loss in accuracy in diagonalizing from
these graphs and we leave that for future work. In the remainder of this work, we focus on the fully coupled
non-diagonal models, with the idea that one can use the diagonalized version to maintain positivity but with
an accuracy that will need to be assessed.

In Fig 4.4 (geometries in Fig 4.1b and c), we show that the choice of domain decomposition also has an
impact on the fields, with the different results for the circular and elliptic central domains. The model based on
the ellipse seems to capture the fastest propagating peak of concentration better than the circular decomposition.
This difference may stem from the fact that both decompositions sample the distribution of the velocity field
differently. For the circular decomposition, one subdomain corresponds to a non-zero velocity, while the other
one is the nodule where the velocity is zero. On the other hand, for the elliptic decomposition, part of the low
velocity region close to the nodule is included in the subregion. The rationale is that, since the velocities close to
the nodule are relatively small, describing the fluid as a unique subdomain may penalize the macroscale model.
In this case, we see from Fig 4.4 that the fastest propagating peak of concentration is faster for the elliptic than
for the circular decomposition.

More generally, this raises the question of optimal domain decomposition for a given geometry. In more
realistic geometries, there can be strong heterogeneities of the velocity or diffusion fields at the microscale. When
these fields are distinctly multimodal, the choice of subdomain decomposition is relatively straightforward.
However, when this is not the case, specific methods could be developed, for instance using optimization
approaches that minimize a cost function capturing the heterogeneity of the medium or of the velocity field.
This is beyond the scope of this paper to study this important issue. In the remainder of this paper, we focus
on the impact of the number of phases, which is the focal point of the paper.

4.5.2. Comparison of macroscopic and DNS results. We then go on to compare models with one,
two (Fig 4.1b and d) and three (Fig 4.1e and f) equations for different values of the Pe number in Fig 4.5
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Fig. 4.5: Comparison of the one-, two- (Fig 4.1b) and three- (Fig 4.1e) equation models for the geometry with
one nodule, t = 10, σ = 3 and different Péclet numbers.

(t = 10 and σ = 3). For the one-nodule geometry and small Pe numbers, all models exhibit very similar
behaviors and provide an accurate description of the transport at the macroscale. For larger Pe numbers,
however, the one-equation description fails to capture the bimodal nature of the scalar field. For the case
with two nodules (Fig 4.6), the one-equation model fails for even lower values of the Péclet number (less than
100) and clearly overestimates the spreading of the signal. This issue, which corresponds to an overestimation
of the dispersion coefficient in the short time and preasymptotic regimes, is rather standard with the one-
equation model. However, it is important to emphasize that the one-equation model is the usual result from
homogenization theories and that it completely fails here. Two- and three-equation descriptions remain very
accurate in all cases. The only question is now whether the three-equation model is better than the two-equation
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Fig. 4.6: Comparison of the one-, two- (Fig 4.1d) and three- (Fig 4.1f) equation models for the geometry with
two nodules, t = 10, σ = 3 and different Péclet numbers.

one. In the case with one nodule, there is very little difference between the two models. This, we hypothesize,
stems from the fact that the geometry displays two, not three, primary subdomains. It is composed of the
central nodule, where the scalar is only transported by diffusion, and the fluid, where advection dominates
diffusion at large Péclet numbers. We therefore observe an important difference between one- and two-equation
formulations, but not between the two and three-equation models. For the geometry with two nodules, Fig 4.6,
we see that the two- and three-equation models display slightly larger differences. This is because the geometry
exhibits three distinct regions, with each nodule now being associated with different diffusion coefficients. Even
though the differences exist, it is difficult to determine from the average fields whether the two- or three-equation
model is closer to the direct numerical simulations. We will see in the next sections, using reconstructed scalar
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(a) Microscale simulation

(b) 1 equation model

(c) 2 equations model (geometry in Fig 4.1d)

(d) 3 equations model (geometry in Fig 4.1f)

Fig. 4.7: Reconstructed fields corresponding to the one-, two- and three-equation models for the geometry with
two nodules t = 10, σ = 3 and Pe = 100.

(a) Microscale simulation

(b) 1 equation model

(c) 2 equations model (geometry in Fig 4.1d)

(d) 3 equations model (geometry in Fig 4.1f)

Fig. 4.8: Reconstructed fields corresponding to the one-, two- and three-equation models for the geometry with
two nodules t = 10, σ = 3 and Pe = 300.
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Fig. 4.9: L2-norm of the error for Péclet numbers in the set {100, 300, 500} for the one-, two- (Fig 4.1b and d)
and three- (Fig 4.1e and f) equation models. The first line corresponds to the geometry with one nodule, while
the second line describes results for two nodules.

fields at the microscale Figs 4.7 and 4.8, that the three-equation model is in fact significantly more accurate.

4.5.3. Comparison of reconstructed (corrector-type) and DNS results. To get a better evaluation
of the accuracy of the approximate solution for the perturbations, we now focus on the corrector-type results and
microscale reconstructions of the field. We have plotted the reconstructed fields for the case with two nodules
for Pe = 100 in Fig 4.7 and Pe = 300 in Fig 4.8 (t = 10, σ = 3). In all cases, the one-equation model completely
fails in describing even the most basic features of the fields, whereas the two- and three-equation models are
much more accurate. We also see that the approximate form of the perturbation that we have devised can lead
to negative values of the scalar field. This is because, although it conserves the zeroth order moment of the
distribution (the integral of u over the whole domain), it does not necessarily respect bounds of the microscale
advection-diffusion problem (min/max principles). The three-equation model drastically reduces this issue and
provides a better approximation of the extrema than the two-equation model with min/max values that are
much closer to the results from the direct numerical simulations.

We further quantify in Fig 4.9 differences between the models by computing the L2-norm of the difference
between the microscale solution, udns, and the reconstructed microscale field, uNeq,

(4.22) Error =

√∫
Ω

(udns (x, y)− uNeq (x, y))
2
dxdy,

with an integral over to the entire domain Ω. We recover similar behaviors to those we have described earlier,
with two and three-equation descriptions always more accurate than the one-equation model. The three-equation

22



0 5 10 15 20 25 30 35 40

0

0.1

0.2

x

uP1eq, Pe = 100

uP2eq, Pe = 100

uP3eq, Pe = 100

uPdns, Pe = 100

0 5 10 15 20 25 30 35 40

0

0.1

0.2

x

uP1eq, Pe = 300

uP2eq, Pe = 300

uP3eq, Pe = 300

uPdns, Pe = 300

0 5 10 15 20 25 30 35 40

0

0.1

0.2

x

uP1eq, Pe = 500

uP2eq, Pe = 500

uP3eq, Pe = 500

uPdns, Pe = 500

Fig. 4.10: Projections of the fields for the direct numerical simulations and the reconstructions for the one-,
two- (Fig 4.1d) and three- (Fig 4.1f) equation models for the geometry with two nodules, t = 10, σ = 3 and
different Péclet numbers.

model is always better than the two-equation one, with significant differences only for the case with two-nodules.
In this figure, we also show that, in the limit of very short time, the three-equation model is slightly more accurate
even for the case with one nodule. Finally, we calculate the projected fields, uPNeq (x, t) =

∫ 1

0
uNeq (x, y, t) dy,

for all models in Fig 4.10. The main result here is that approximate solution for perturbations in the three-
equation model indeed lead to a more accurate description of the signal.

These results suggest that there may be an optimal number of subdomains, where gain in accuracy balances
computational and complexity costs. For instance, in the case with one nodule, we may use two-equation
models for practical applications, while three-equation models may be useful for other configurations. Further,
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this optimal number of subdomains strongly depends upon the microstructure, the spatial distribution of the
parameter fields, the Péclet number, the initial and boundary conditions, or even the time of interest, the size
of the macroscopic domain or the accuracy required. For instance, if we were interested in larger macroscale
domains and longer times, even the one-equation model would be accurate. Therefore, the cost function of
an optimization problem aiming at determining the optimal number of subdomains would need to be defined
specifically for each problem and accuracy required.

5. Conclusions. In this work, we have developed models for the description of scalar transport through
heterogeneous media. Standard homogenization theories usually yield one-equation descriptions at the macro-
scale, which fail in the short time limit and when constraints regarding the dimensionless number are not
met (e.g. the Péclet number is too large). Here, we propose an alternative formulation based on a domain
decomposition method. The macroscale model consists of a set of coupled equations describing average values
of the scalar fields within each subdomain. We have shown that, even for very simple structures, two- or
three-equation models overcome important limitations of the standard model. As the number of subdomains
increases, so does the accuracy of the description and a decomposition in three-subdomains is always better than
the one in two subdomains. This work lays the foundation of a theory for finite-epsilon homogenization that
shows great potential. However, several aspects must be improved in order to obtain more robust formulations
that can be readily used in practical applications. For instance, the approximate form of the solution for the
perturbations does not necessarily respect min/max principles for the scalar. Further, the difference between
using N and N+1 subdomains may not be always significant and, in many cases, there is probably an optimal
number of subdomains, in particular when a clear multimodal distribution of properties can be identified.
Another important improvement would be the derivation of a general result for the coercivity of the dispersion
matrix, which in our approach must be verified a posteriori for each case. Other improvements include: (1)
applications to three-dimensional structures with different spatial distributions of properties, (2) decomposition
into a larger number of sudomains to assess how the accuracy evolves with a large number of subdomains, (3)
optimality of the geometry/topology of the subdomains, and (4) rigorous convergence results with the number
of subdomains.
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