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Intriguing viscosity effects in confined suspensions:
A numerical study

Y. DAVIT and P. PEYLA®

Laboratoire de Spectrométrie Physique, Université Joseph Fourier - Grenoble 1, BP87,
F-38402 Saint Martin d’Heres, France, EU

PACS 47.57.E- — Suspensions
PACS 47.57.Qk — Rheological aspects
PACS 47.11.-j — Computational methods in fluid dynamics

Abstract — The effective viscosity of dilute and semi-dilute suspensions in a shear flow in a
microfluidic configuration is studied numerically. The suspension is composed of monodisperse
and non-Brownian hard spherical buoyant particles confined between two walls in a shear flow.
An abrupt change of the viscosity behaviour occurs with strong confinements: when the wall-
to-wall distance is below five times the radius of the particles, we obtain a change of the sign
of the contribution of the hydrodynamic interactions to the effective viscosity. This effect is
the macroscopic counterpart of the peculiar micro-hydrodynamics of confined suspensions due
to the influence of walls. In addition, for higher concentrations (above 25%), we find that the
viscosity meets a minimum when the inter-wall distance is around five times the sphere radius. This
phenomenon is reminiscent of the Fahraeus-Lindqvist effect for blood confined in small capillaries.
However, we show that for sheared confined semi-dilute suspensions, the physical origin of this

minimum is not due to a migration effect but to the change of hydrodynamic interactions.

Introduction. — Solid particles suspended in a conven-
tional liquid form a suspension. This composite fluid
constitutes a widespread fluid material in nature as well
as in industry [1]. The particles can be spatially confined
in porous media, in biological capillaries or in micro-
fluidic devices [2]. In these situations, rheological phenom-
ena due to interactions between device boundaries and
fluid constituents become much more important than in
conventional cases. These interactions of hydrodynamic
origin play a crucial role, particularly, they appear to affect
notably the effective viscosity (n)ess of confined sheared
suspensions as shown in this letter. Of course, consider-
ing microfluidics devices, pressure-driven flows are very
important. However, in order to understand the role of
the walls on hydrodynamic interactions, it is preferable to
study a suspension in a simple shear geometry in order to
estimate its effective viscosity. In addition, it should allow
rheologists to easily compare their experimental results
with our numerical predictions.

It is well known that the relative viscosity of a semi-
dilute sheared suspension follows a virial expansion:
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where ¢ is the volume fraction defined as the volume of the
particles normalized to the total volume of the suspension
and 7o is the viscosity of the fluid. For a non-confined
suspension of hard spheres, the linear term (the intrinsic
viscosity) is [n]1,.0 =2.5 as calculated by Einstein [3]
for a strong dilution (i.e. particles are far enough not
to interact with each other through hydrodynamics).
Subscript oo indicates that we refer to non-confined
suspensions. When increasing ¢, the semi-dilute regime
is reached, the particles get closer than in the dilute
regime and start to interact hydrodynamically. Batchelor
and Green [4] showed that the hydrodynamic interactions
contribute to the second order in ¢. They found [1]2,00 =
5.2 4+ 0.3 for a non-confined and non-Brownian suspension
where the particles are uniformly distributed. Since then,
a more precise estimation of [1]2,.c = 5.0 has been achieved
by Cichoki and Felderhof [5].

We find that when the wall-to-wall distance (or gap)
w decreases, the linear term [n]; (dominant for strongly
dilute cases, i.e. ¢ < 1) increases. This is due to dissi-
pation which is enhanced for smaller gaps. However,



the quadratic term [n]y decreases to zero when w=~~5R
and becomes negative for smaller gaps (2R <w <5R),
R being the sphere radius. This intriguing behaviour is
due to the specific hydrodynamic interactions of strongly
confined suspensions. We also find that the effective
viscosity exhibits a minimum as a function of the gap
for concentrations ¢ > 25%. We show that this minimum
is a consequence of the change of the hydrodynamic
interactions when the suspension is getting confined and
not of particles structuring or demixing as, for example,
it is the case for blood confined in small capillaries
(Fahraeus-Lindqvist effect) [6].

Model and numerical method. — The suspended
elements are monodisperse spheres of radius R that
are free to rotate. In the present work, the Brownian
motion is not included since we consider rather large
objects like cells, vesicles or capsules. Note that we
consider rigid particles both for simplicity and in order
not to include further ingredients like deformability. The
spheres are suspended in a Newtonian fluid of viscosity
7o confined between two plates. The two plates located
at © = +w/2 move at v, = +vg, respectively, so that the
shear rate is 4 =2vg/w. No-slip conditions are used at
the fluid/plates interface. The confinement is measured by
the dimensionless gap ¢=w/2R. As an initial condition,
we randomly and homogeneously distribute the spheres
(taking care to avoid any overlaps). The fluid equation of
motion around the spheres takes the usual form

p(O+v-V)v=V.o, (2)

with the incompressibility condition V-v =0, where v is
the velocity field and p is the fluid density. Note that we
deal with buoyant particles with the same density p. The
stress tensor reads

0ij = —Pdij +m0[0iv; + 0jvi], (3)

where P is the pressure field and 79 is the viscosity of
the solvent. Usually, the spheres are taken into account
through moving boundary conditions which are quite
difficult to handle. This problem will be circumvented
as follows. We use the “fluid particle dynamics” (FPD)
originally developed by Tanaka and Araki [7] and extended
to 3D by one of the authors [8]. Note that other methods
such as lattice Boltzmann methods [9,10] or Stokesian
dynamics [11,12] could be used as well. The advantage of
the FPD is to explicitly avoid tracking the particles and
thus to avoid applying boundary conditions on a moving
boundary. In this method, the particles are defined as
high-viscosity regions in comparison to that of the solvent.
Therefore, the flow field is defined in the entire domain
(and not only outside the spheres) bounded by the walls.
Thus, at each time step eq. (2) is solved outside and inside
the particles except that the viscosity 7o is replaced by a
viscosity field. We briefly summarize the main points of
the numerical method, details can be found in the original
Tanaka’s and Araki’s paper [7].

The presence of the particle number n is accounted for
via an auxiliary field,

on(r) = {1 +tanh[(a —[r —r.[) /{]} /2, (4)
where ¢ represents the fluid-particle interface thickness
and r, is the off-lattice center of the particle n. Thus,
the radius of a sphere is R =a+ (. We choose a =24 and
¢ = 6 where ¢ is the mesh size. In other words, the difficulty
of the sharp interface between each sphere and the fluid
is circumvented by introducing a diffuse (albeit abrupt
enough) interface. The idea then is to introduce a viscosity
field such as

N
n(r) =no+(p—1m0) > ¢n,

n=1

()

where N is the total number of spheres. This ensures
that far enough from the particle, the local viscosity
is n=mno (the solvent viscosity) and inside the particle
we have n=m, (the particle viscosity). The viscosity
contrast is fixed to 7,/no =100. This choice is made to
avoid any recirculation of the fluid inside the spheres,
which can thus be considered as rigid [7]. Equation (2) is
solved on a Mac grid [13] where pressure P, viscosity 7
(instead of 79), and stress are calculated at the center of
each cubic mesh ¢ of size d x § x § located in (X;,Ys, Z;),
while fluid velocity components are calculated at the
center of each face of the mesh. This ensures that
each term involved in eq. (2) when it is discretized is
calculated at the same point of the mesh grid [13]. In
order to get the right value of the volume fraction ¢,
the volume of the particles must be calculated carefully
by taking into account the diffuse interface (of size ()
of each particle. Due to the discretization of the solvent,
we compute the volume fraction by counting the num-
ber N, of cells of viscosity at least 10% bigger than the
solvent one 1y = 1. For each particle with size parameters
such as a =24 and (=4, we get 119 < N./N < 125. This
number slightly fluctuates since particles are off-lattice
while the viscosity field is averaged in each cell. The
volume fraction is calculated as ¢ = N./Npoy, where Npoy
is the total number of cells in the simulation box. It gives
an effective radius Res; = (3N./4nN)¥/3§ such that
3.060 < Refr <3.15, which is close to the value of
R=a+(=34.

The numerical procedure is as follows: for each time
step 0t =0.001, pressure and velocity are calculated
following a standard projection method ensuring the
incompressibility of the fluid [13]. A constant value
for 4=10"2/6t=10"2 is used for the different studied
values of the gap. Inertia is negligible in eq. (2) since
only small Reynolds numbers are considered here. The
typical simulation box sizes are Ly = 796, Lz = 606, while
Lx = w varies from 100 to 799. Here, = 1. The boundary
conditions are such that the fluid velocity is imposed on
X, Y box boundaries (vz(X,Y =+Ly/2,7Z)=4X and
vz(X =+w/2,Y, Z) =+wvy), while periodic boundary
conditions are adopted in the Z-direction. For each time
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Fig. 1: Averaged relative viscosity as a function of rescaled time
4t with 4=10"2. For a gap c¢=13.2 and a volume fraction
¢ = 11%, after an initial transient regime, the viscosity reaches
a plateau.

step, the off-lattice center r,, of the particle n is moved
as follows: r,(t+dt) =r,(t) +dtv,(t), where v,(t) is
the fluid velocity averaged on the high-viscosity region
surrounding the center of the sphere n at time ¢. It ensures
the shape preserving of the particles. The viscosity field
is then reconstructed [7] considering the new positions of
the spheres at time ¢+ dt. This gives rise to a new bulk
viscosity field. This field is injected into eq. (2) which is
solved again for ¢+ dt. In previous papers [7,8], tests on
this method have been performed to prove its reliability.

Results. — The effective viscosity of the suspension
is evaluated by calculating the tangential force per unit
surface exerted by the plates on the fluid: f (t) = G,.(z =
+w/2, t)n, which is necessary to maintain a constant
velocity vy on the upper (+) and lower (—) plates. The
unit vector n is normal to the fluid/plate interface. 7,
represents the average of o,,(+w/2) on the whole surface
of the fluid in contact with the plates. The time-dependent
effective viscosity is thus nesr(t) =1/2 [fF(t) — f2 (£)]/7-

Initially, we start with a random distribution of spheres.
After a transient regime, the effective viscosity reaches
a plateau and remains stable for thousands of time
steps (fig. 1). By eliminating the initial transient regime
and averaging the plateau values, we finally obtain the
averaged effective viscosity (n)ers calculated for a given
confinement and a given initial configuration (fig. 1).

In fig. 2, we show the relative effective viscosity An/no
obtained numerically as a function of the volume fraction
¢ for three different confinements. When decreasing the
gap w at constant R, we can explicitly see that the
curvature of the curves decreases and becomes negative,
while the linear term increases when the dimensionless gap
¢ decreases.

We fit An/no(¢) for each gap value. We performed the
fit below ¢ < 15% with a 2nd-degree polynomial expression
in ¢ as in eq. (1). As a matter of fact for ¢ <15%
the contribution of higher-order terms is found to be
negligible. Thus, we obtain the values of the coefficients
[n]1 and [n]2 as functions of the dimensionless gap c (fig. 3).

- N
n S n w

(N> =Mp)M

0.5

0.4

Fig. 2: Relative viscosity as a function of ¢ for different gaps
(circles ¢=13.2; triangles-up c¢=2.5; squares ¢=1.67). The
solid curves are just guide for the eyes. The dashed lines
indicate slopes at the origin for the two extreme values of c.
The drawing gives a schematic view of the studied system.
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Fig. 3: Coefficients [n];1 (circles) and [n] (triangles) as a

function of the normalized gap c¢. The curves are just guides
for the eyes. Error bars are due to the fit uncertainty.

A rapid variation of these two coefficients is observed when
the inter-wall distance w becomes smaller than 5R.

For a non-confined suspension (subscript o), we obtain
the values [n]1,00 =2.6 £0.2 and [n]2,00 = 5.4 £ 0.5]. Here,
non-confined means that we perform our calculations with
large values of the gap. The largest value that we use is
¢ =13.2 for which the parameters [n]; and [n]. reach their
non-confined values within the error bars. Therefore, we
assume that the confinement ¢ =13.2 can be considered
as close enough to a non-confined case. Einstein’s [3]
theoretical value of [1]1,00 =2.5 is quite well recovered.
It means that our estimation of the volume fraction is
precise enough. The theoretical value [1]2,00 =5.0 [5] is
also recovered within the error bars +0.5. This uncertainty
is due to the quadratic polynomial fit done on a finite set
of points with error bars. The main source of uncertainty
of the numerical method is due to the slight dependence of
the effective viscosity on local non-uniformity of the initial
distribution of particles. In dilute and semi-dilute regimes,
this kind of non-uniformity remains during the shear. This
problem is usually cured by using more particles within
a bigger simulation box (at constant ¢) or by averaging
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Fig. 4: Numerical velocity field év in the equatorial plane
(YOZ) of a sphere confined in a shear (the particle region is
indicated with a dashed circle). The velocity field is such that
OV =V — Vijhear, Where vgpear = (0,0,7X) is the velocity field
in the absence of particles. The field dv is the additional flow
created by an off-centered spherical particle which is confined
along the Z-axis with ¢=1.67. The particle clearly creates a
conterflow for other particles located along the Y-axis. v is
similar to the velocity field considered in ref. [15].

the effective viscosity on several runs using different
initial configurations. Of course, these two procedures are
computer-time consuming, especially in 3D, but they are
feasible with the help of a parallel version of the program
which is under elaboration. We also perform a fit of the
relative viscosity by the Krieger and Dougherty empirical
formula [14]: An/no= (1 —¢/¢m) %%m —1 gives ¢, ~
0.635 and a~2.56 in good agreement with the values
M1.00 =@ and [N]2.00 = 1/2 (14 apm)/P given above.

When increasing the confinement (smaller values of c),
[n]1 increases since the dissipation increases when walls
are getting closer. The [n]> values decrease and cancel
out when the gap w~5R. For stronger confinements
(2R <w < 5R), [n]2 becomes negative. This means that
the contribution of the hydrodynamic interactions to
the effective viscosity becomes negative. This reveals the
peculiar hydrodynamic behaviour of confined suspensions
due to the influence of walls.

Recently, it has been experimentally [15] and theo-
retically [16,17] shown that hydrodynamic interactions
between particles behave abnormally when the suspen-
sion is confined between two planar walls in a Hele-Shaw
configuration. When the gap is slightly larger than the
spherical-particles diameter, one deals with a quasi-2D
(Q2D) suspension. Cui et al. [15] experimentally showed
that an anti-drag effect holds between two particles
moving perpendicularly to their connecting line. One
should recover a signature of these remarkable Q2D
microscopic hydrodynamic properties in the rheology
—a macroscopic property— of confined semi-dilute
suspensions through the quadratic ¢-dependence of the
effective viscosity. For non-confined suspensions, the drag
effect between interacting particles enhances the viscosity
and [n]2.0c has a positive value. An anti-drag effect can
explain the change of the sign of this term for confined
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Fig. 5: Relative viscosity as a function of the dimensionless
gap c for different values of ¢: ¢ =30% (diamonds), ¢ =25%
(circles), ¢ =15% (triangles), ¢ =5% (squares). The dashed
curves are obtained using eq. (1) and the values of coefficients
[n]1 and [n]2 as functions of ¢ (fig. 3).

suspensions. Therefore, the fact that the contribution
of hydrodynamic interactions to the viscosity becomes
negative could be traced back to this peculiar interaction
effect. We have calculated the velocity field created by a
single force-free sphere between two close walls (¢ =1.67).
The induced flow thus created can push back another
sphere aligned along the Y-axis. This flow is at the origin
of the anti-drag effect measured by Cui et al. [15]. In
fig. 4, we show the velocity field 0v =v — Vgpeqr, where
Vshear = (0,0,7X) is the velocity field in the absence of
particles (see fig. 4). We obtain the same velocity field
as the one that is created by a point-force in the middle
of two walls and parallel to the walls [15]. It is also
equivalent to a force dipole in the absence of walls.

At present, further studies are needed before obtaining
a clear answer. To our knowledge, a full non-perturbative
theory dealing with the influence of walls on coefficient
[n]1 and [n]2 is still lacking [18].

Note that around ca1 a solid friction should occur
between particles and walls. In order to avoid this effect,
which is not taken into account in our model, we limit
ourselves to the values ¢ > 1.67.

We find another interesting effect which is a direct
consequence of the peculiar behaviour of hydrodynamic
interactions in confined suspensions. At higher concen-
trations (¢ >25%), we find that the viscosity meets a
minimum when the inter-wall distance is such that w ~5R
(fig. 5). For smaller concentrations, this phenomenon is
not observed. This looks very similar to the Fahraeus-
Lindqvist effect which is very well known for blood flow-
ing through capillaries of different diameters [6]. The
apparent viscosity of blood meets a minimum when the
diameter is comparable to the red blood cells size and
when the concentration of cells is higher than 20%. The
Fahraeus-Lindqvist effect is due to a migration of the cells
to the center of the parabolic flow in the capillary where
they form rouleaux [6,19]. As shown below, the minimum
we obtained is not mainly due to a migration but to the
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Fig. 6: Local volume fraction ¢jocqi(X) as a function of X/w
for two different values of ¢ and c. Each bar represents a layer
located in X of one-mesh size and parallel to the plates. A
depletion layer of about 2R is only observed for non-confined
suspensions at ¢ = 25%. In the other cases, a lubrication fluid
layer is observed. The double arrow represents the diameter of
a particle. For the stronger confinement (¢ =2.5) two different
meshings have been used.

sign change of [n]y when the suspension is sufficiently
confined.

In order to estimate the migration of spheres perpen-
dicularly to the flow, we calculate a local volume frac-
tion @ocqr(X). It is the volume fraction averaged on all
the cells located at height X between the plates (—1/2 <
X/w<1/2). As a matter of fact, a depletion near the
walls is observed for high concentrations (¢ > 25%) in non-
confined situations. But, such a depletion is not observed
for confined suspensions at any concentration: averaging
on thousands of time steps, the distribution of spheres is
rather uniform between the walls (see fig. 6). The absence
of depletion at low concentration can be explained by the
fact that for negligible Reynolds number, a single sphere
is not submitted to a force normal to a close wall. There-
fore, a depletion near the walls is due to a collective effect
and is observed at relatively high concentration (here, for
¢ >25%). Note that a lubrication fluid layer of one- or
two-mesh size is always present between the walls and the
particles. Note that migration perpendicular to the flow
is a usual phenomenon also observed for solid particles in
the case of pressure-driven flows [20]. In order to verify
that migration perpendicularly to the flow has no effect
on the minimum, we also performed simulations with a
very small value 4 = 1077 /6t = 10~*. It allows us to calcu-
late the averaged value of the effective viscosity on a time
scale smaller than ¥~! (i.e. the spheres remain globally
immobile during the simulation). The value of the viscos-
ity so obtained are in good agreement with those obtained
at stronger 4 except for high concentrations and non-
confined cases where the migration takes place and affects
the viscosity.

So, unlike the Fahraeus-Lindqvist effect the minimum is
not due to a migration of the particles perpendicularly to
the flow. It is the result of the opposite variation of [r]; and
[n]2 as functions of ¢ (fig. 3). As a matter of fact, we make

the crude assumption that An/ng is still well described by
the expansion (1) when ¢ is bigger than 15%. The plot
of [n]1¢+ [n]2¢? at constant ¢ as a function of ¢ clearly
shows a minimum around w/R=~5 for ¢ >25% (fig. 5).
Of course, the agreement is good for small concentrations
(¢ < 15%) for which expression (1) is well verified. High-
order terms in ¢ explain the difference between the curve
and the calculated points for ¢ =25% or ¢ =30%. But
despite this difference, the presence of the minimum is
clearly reproduced.

Conclusion. — Our main result is that the quadratic
¢-dependence of the relative viscosity becomes negative
for confined suspensions below c¢=w/2R~2.5. Some
preliminary experimental results [21] tend to confirm our
numerical predictions. Another result is a consequence of
the first one: the viscosity meets a minimum for the same
c value. Several questions deserve future considerations.
A full theory including walls to provide the confinement
dependence of coefficients [n]; and [n]s is still lacking.
Since a direct simulation is used, any type of geometry
(such as pressure-driven flows, with branching, constric-
tions,...) could be implemented as well. This should
open interesting lines of inquiries towards the elaboration
of prototypical devices for the sorting and guidance of
suspended objects in microfluidics.
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