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H I G H L I G H T S

! Upscaling of slightly compressible single phase flow in bi-structured porous media.
! The resulting macroscopic system is a two-pressure equations.
! All the effective coefficients are entirely determined by three closure problems.
! Comparison with pore-scale direct numerical simulations for a particle filter.
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a b s t r a c t

Problems involving flow in porous media are ubiquitous in many natural and engineered systems.

Mathematical modeling of such systems often relies on homogenization of pore-scale equations and

macroscale continuum descriptions. For single phase flow, Stokes equations at the pore-scale are

generally approximated by Darcy's law at a larger scale. In this work, we develop an alternative model to

Darcy's law that can be used to describe slightly compressible single phase flow within bi-structured

porous media. We use the method of volume averaging to upscale mass and momentum balance

equations with the fluid phase split into two fictitious domains. The resulting macroscale model

combines two coupled equations for average pressures with regional Darcy's laws for velocities. Contrary

to classical dual-media models, the averaging process is applied directly to Stokes problem and not to

Darcy's laws. In these equations, effective parameters are expressed via integrals of mapping variables

that solve boundary value problems over a representative unit cell. Finally, we illustrate the behavior of

these equations for model porous media and validate our approach by comparing solutions of the

homogenized equations with computations of the exact microscale problem.

1. Introduction

Porous media are intrinsically highly complex materials, with
the consequence that transport phenomena generally occur over a
broad spectrum of spatial and temporal scales. Even for single
phase flow, this variety of characteristic time and length scales
may preclude the use of a one-equation continuum representa-
tion. For instance, advection and diffusion of a single species in
a system with stagnant zones or dead-end pores are better
represented macroscopically by a two-equation model in which
the species concentration is divided into mobile and immobile
fractions (see Coats and Smith, 1964 for an early discussion on the
subject). In many applications (including flow in fractured media,
automobile soot filters or chemical and biochemical reactors), the

porous medium itself exhibits a distinct two-region topology,
e.g., as a consequence of a contrast of porosity or a difference
in the pore structure geometry. Herein, we will use the term
bi-structured to describe these porous media, a term which
represents a more general definition than the traditional dual-
media or dual-porosity terminology. With this definition, one may
differentiate each region according to a number of different proper-
ties including the topology of the fluid flow. For example, in
fractured media, fractures represent a zone of preferential flow
whereas the amplitude of the velocity field in the matrix blocks is
often orders of magnitude smaller. In the literature, solute transport
in such systems is often described using mobile/immobile models.
Rapid advective transport in the mobile domain is accompanied
by diffusive mass transfer of the solute in the immobile domains.
This contrast of time scales may strongly impact the concentration
field and it is well known that breakthrough curves, in such
configurations, typically exhibit strong tailing effects.
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More generally, if time and length scales characterizing the two
regions differ significantly, non-equilibrium models may be man-
datory. An example of one such model is a generic two-equation
formulation (see Coats and Smith, 1964; Brusseau and Rao, 1990)
in which average concentrations are defined over each region
separately. In this model, each equation involves the average
velocity within each region; velocity fields that are also known
as “regional velocities”. The situation simplifies for mobile/immo-
bile systems since the regional velocity of one region is negligible
and, therefore, the net superficial velocity corresponds to the
superficial velocity of the mobile region. However, bi-structured
systems are not necessarily of the mobile/immobile type. If
advection cannot be neglected in the slower region, a mobile/
mobile model (Skopp et al., 1981; Gerke and VanGenuchten, 1993;
Ahmadi et al., 1998; Cherblanc et al., 2003) with two different
regional velocities may be necessary. In practice, experimental
measurements of these regional velocities are difficult and one can
often access only the total imposed filtration velocity. Regional
velocities may therefore be determined indirectly by inverse
optimization techniques, although such approaches will be pri-
marily useful in large-scale 1D cases. For interpreting a complete
3D macroscale problem, the momentum transport equations are
needed along with mass transport equations. This issue has been
addressed theoretically in Quintard and Whitaker (1996) using the
volume averaging technique. In this cited paper, large-scale
momentum transport equations are determined via a two-step
upscaling procedure: Stokes equations are first averaged to obtain
a Darcy-scale description within each region and, then, a regional
averaging is performed in order to obtain the large-scale equa-
tions. This was done in Quintard and Whitaker (1996) for the
flow of a slightly compressible fluid and led to a large-scale
two-equation model involving two average pressures; a result
thus generalizing the classical two-equation model of Barenblatt
et al. (1960). Further, average velocities can be determined via
regional Darcy's laws in which regional permeability tensors
are expressed as integrals of mapping variables that solve the
so-called closure problems defined at the Darcy-scale (see
Quintard and Whitaker, 1998 and Fig. 1). Again, this derivation is
a recursive procedure based on a successive averaging from the

pore-scale to the Darcy-scale and then to the large-scale. Typically,
the following constraints must be satisfied:

1. The pore-scale characteristic lengthmust be much smaller than the
characteristic lengths of the two regions (separation of scales), so
that Stokes can be upscaled to Darcy's law within each region.

2. The subsequent upscaling from Darcy's law within each region
to a large-scale Darcy's law or a dual-media model (as devel-
oped in Quintard and Whitaker, 1996) also requires a separation
of scales between the regional and large-scale characteristic
lengths.

Therefore, this two-region approach applies only to large systems
and cannot be used directly for some bi-structured porous media
at the pore-scale, for which the first separation of scales does not
hold. In this work, our goal is to derive one such two-pressure
model directly from the Stokes problem at the pore-scale.

There are many industrial applications involving bi-structured
porous media where it may be useful to split the flow of a single
phase into two coupled continuum equations. This is the case, for
instance, in tangential filters in which two sets of channels are
exchanging via small holes or porous walls (Belfort et al., 1994;
Zeman and Zydney, 1996; Oxarango et al., 2004; Borsi and Lorain,
2012). Recently, in an attempt to model the liquid distribution
within structured packings used in chemical engineering pro-
cesses, Mahr and Mewes (2008) have found convenient to split the
(physically homogeneous) liquid phase into two fictitious phases.
This approach was motivated by the fact that the structured
packings are made of an assembly of corrugated sheets where
two-adjacent sheets are inclined by a given angle with respect to
the vertical axis and the opposite of this angle, respectively. As a
consequence, the liquid phase behaves as if split into two pseudo-
phases flowing along each sheet with a preferential direction.
These phases are not (except perhaps at very low saturation)
completely independent since adjacent sheets are in contact and
the wetting liquid can flow from one sheet to the other. In the
paper referenced above, this transfer between the two liquid
phases is treated using a heuristic function involving the differ-
ence between the volume fraction of fluid in each phase. Although
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Fig. 1. Schematic representation of the hierarchy of length scales of a classical dual-porous medium as presented in Quintard and Whitaker (1996).



theoretical arguments based on a volume averaging theory are
discussed by the authors, the developments are at some point
heuristic and we believe that a complete theoretical derivation of
the macroscale models is still necessary. For simplicity, we will
focus in this paper on the fully saturated case.

The paper is organized as follows. In Section 2, we present the
equations that govern the fluid motion through a bi-structured
porous medium. The flow of the single phase is divided into two
fictitious phases defined by the topology of the problem. In Section
3, we derive Darcy's law as a pedagogical exercise that facilitates
later comparison with the two-pressure model. In Section 4, we
present theoretical developments for the derivation of the two-
pressure model with phase splitting. In Section 5, we solve
numerically the flow through a simplified particulate filter using
Darcy's law and the two-pressure model. The macroscale models
are then compared with direct numerical simulations of the pore-
scale problem in the absence of adjustable parameters. Then, in
Section 6, we investigate the potential importance of the coupling
cross-terms that appear in the macroscale model, by simulating
flow through a dual porous medium.

2. Preliminaries

In this section, we present the pore-scale mass and momentum
transport equations, the two-phase splitting methodology and
several preliminary results concerning the averaging method.

2.1. Pore-scale problem

Herein, we will use the index α to denote the fluid phase
(domain Vα) and s to denote the solid phase. The mass balance
equation in the fluid phase can be expressed as the following
partial differential equation:

∂ρα

∂t
þ ∇⋅ðραvαÞ ¼ 0 in Vα; ð1Þ

where ρα is the density in the α&phase and vα is the velocity field.
Further, we will focus on creeping conditions, so that the momen-
tum balance equation simplifies to the following Stokes equation:

0¼−∇pα þ ραgþ μ∇2vα in Vα; ð2Þ

where pα is the pressure, g is the gravitational acceleration and μ is
the dynamic viscosity. At the fluid–solid interface, Aαs, we impose
the no-slip boundary condition

vα ¼ 0 at Aαs: ð3Þ

2.2. Phase splitting

As discussed in the Introduction of this paper, we are interested
in bi-structured porous media that typically exhibit a bi-modal
distribution of one of the flow properties, e.g., the amplitude or

direction of the velocity field, as illustrated in Fig. 2. This topology
suggests that splitting the phase ðαÞ into two fictitious domains ðγÞ
and ðβÞ may be a useful operation. Further, we will consider that
these regions are static and can be defined arbitrarily (although
there is probably an optimal way to split the domain). In fact, the
most pertinent delineation will strongly depend on the problem of
interest and the purpose of the model. Applications to mass
transfer through dual-porosity structures may require criteria
based on the magnitude of the velocity or the Péclet number.
For example, we could split the regions by using a number of
image processing algorithms on the velocity magnitude spectrum
and facilitate the identification of, say, a mobile and an immobile
regions. In the case of the structured packing that was mentioned
in the Introduction, the splitting could be performed using the
orientation spectrum of the velocity field, i.e., the orientation of
the corrugated sheets (Mahr and Mewes, 2008; Soulaine, 2012)

Eq. (1) yields

∂ρi

∂t
þ ∇⋅ðρiviÞ ¼ 0 in V i with i¼ β or γ: ð4Þ

Similarly, Stokes equation may be written as

0¼−∇pi þ ρigþ μ∇2vi in V i; i¼ β or γ: ð5Þ

Since we are considering the same fluid within phases ðγÞ and ðβÞ,
we have identical physical properties on both sides of the
boundary Aβγ . For instance, we have considered that the viscosity,
μ, is constant and the density obeys the same thermodynamical
laws in phases ðγÞ and ðβÞ (see details in Section 2.4 in the case of a
slightly compressible fluid).
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γ

Fig. 2. Schematic representation of a model bi-structured porous medium. In this

example, the average amplitude of the flow within the γ&region is significantly

larger than the average amplitude of the flow within the β&region. Therefore, the

α&phase may be split into two fictitious phases, β and γ, for upscaling purposes.
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Fig. 3. Schematic representation of the hierarchy of length scales of a model porous

medium and of a typical representative volume.



The no-slip boundary condition on the fluid/solid surface area,
Ais, supplies

vi ¼ 0 at Ais; i¼ β or γ: ð6Þ

On the interface between the two fluid phases, Aβγ , we will use
continuity conditions for the velocity and pressures

vβ ¼ vγ at Aβγ ; ð7Þ

and

pβ ¼ pγ at Aβγ ; ð8Þ

as well as their derivatives.
A priori, the boundary conditions, Eqs. (7) and (8), suggest that

a two-equation model with an exchange term based on averaged
pressures and/or velocities differences may be adapted to the
macroscale description of this system.

2.3. Definitions and theorems

In this section, we present the definitions and theorems that
are needed to perform volume averaging. We will only give a brief
outline of the technique and the reader is referred to Whitaker
(1999) for a more detailed presentation.

The multiscale problem under consideration is schematically
represented in Fig. 3. This figure illustrates the three characteristic
length-scales that are involved in this system: (1) the macroscale,
L; (2) the radius, R, of the averaging volume, V; and (3) the average
pore size for region α, ℓα (where α¼ β; γ). Throughout this paper,
we use the following separation of scales assumption: ℓα≪R≪L.
We have discussed differences with the work in Quintard and
Whitaker (1996) in the Introduction of this paper and illustrated
the different scales in Figs. 3 and 1.

For a tensor ψ i (order 0, 1 or 2) defined in the i-phase, we will
use the average notation

〈ψ i〉¼
1

V

Z

V i

ψ i dV ; ð9Þ

and the corresponding intrinsic average

〈ψ i〉
i ¼

1

V i

Z

V i

ψ i dV : ð10Þ

These two expressions are connected by

〈ψ i〉¼ εi〈ψ i〉
i with εi ¼

V i

V
; ð11Þ

where Vi is the volume of the i-phase and εi is the volume fraction
of the i-phase. Throughout this paper, the porous medium is
homogeneous and εi is constant.

To perform the perturbation analysis, we will use Gray's
decomposition (see in Gray, 1975)

ψ i ¼ 〈ψ i〉
i þ ~ψ i; ð12Þ

and we will impose the following separation of length scales,
ℓ≪R≪L, which yields (see in Whitaker, 1999):

〈 ~ψ i〉¼ 0: ð13Þ

To interchange integrals and derivatives, we will use the following
theorems. For spatial averaging, we have

〈∇ψ i〉¼∇〈ψ i〉þ
1

V

Z

Ai

niψ i dA; ð14Þ

and a similar expression for the divergence of a tensor field Ai

(order 1 or 2)

〈∇⋅Ai〉¼∇⋅〈Ai〉þ
1

V

Z

Ai

ni ' Ai dA: ð15Þ

In these theorems, Ai denotes all the interfaces in contact with the

i-phase and ni is the outwards normal vector. On averaging over
the phase ðαÞ, this theorem reads

〈∇ψα〉¼∇〈ψα〉þ
1

V

Z

Aαs

nαsψα dA: ð16Þ

On averaging over the phases ðβÞ or ðγÞ, the interface Ai contains
both the fluid/solid and fluid/fluid interfaces. Consequently,
Eq. (14) may be written as

〈∇ψβ〉¼∇〈ψβ〉þ
1

V

Z

Aβs

nβsψβ dAþ
1

V

Z

Aβγ

nβγψβ dA: ð17Þ

Finally, we will use the following simplifications. We will
consider that the volume fractions are constant, so that

∇εi ¼−
1

V

Z

Ai

ni dA¼ 0; ð18Þ

and that the interfaces are static, so that

∂ψ i

∂t

" #

¼
∂〈ψ i〉

∂t
: ð19Þ

2.4. Slightly compressible approximation and thermodynamics

Throughout this paper, we will work under isothermal condi-
tions so that the pressure completely defines the thermodynami-
cal state of the system. We will consider that the fluid density can
be written as a function of the pressure

ρα ¼ FðpαÞ: ð20Þ

Further, on injecting Eq. (12) into Eq. (20) and assuming that
perturbations remain small enough to perform a zeroth-order
approximation, we obtain the following macroscale relationship
(see Whitaker, 1987; Quintard and Whitaker, 1996):

〈ρα〉
α ¼ Fð〈pα〉

αÞ: ð21Þ

In this work, we consider the following approximation as
presented in Quintard and Whitaker (1996):

〈ρα〉
α≃ρ0½1þ cð〈pα〉

α−p0Þ); ð22Þ

where p0 is a reference pressure; ρ0 is the corresponding reference
density; and c is a compressibility coefficient given by

c¼
1

ρ0
∂F

∂p

$ %

p ¼ p0
with ρ0 ¼ Fðp0Þ: ð23Þ

Following Quintard and Whitaker (1996), we simplify notations
using hydrostatic pressures

Pα ¼ pα−p
0−ρ0g ' rα; ð24Þ

where rα is the position vector. With these definitions, we remark
that

〈Pβ〉
β−〈Pγ〉

γ ¼ 〈pβ〉
β−〈pγ〉

γ : ð25Þ

Further, as shown in Quintard and Whitaker (1996) for disordered
porous media, we have

∇〈Pα〉
α ¼∇〈pα〉

α−ρ0g: ð26Þ

On using Eq. (22) into Eq. (26), we obtain

∇〈Pα〉
α ¼∇〈pα〉

α−〈ρα〉
αgþ ρ0cð〈pα〉

α−p0Þg: ð27Þ

We further simplify these equations by limiting our study to
slightly compressible fluids, defined here by the following inequal-
ities:

cð〈pα〉
α−p0Þ≪1 and ρ0cð〈pα〉

α−p0Þg≪∥∇〈Pα〉
α∥: ð28Þ



Consequently, we will approximate Eq. (26) using

∇〈Pα〉
α≈∇〈pα〉

α−〈ρα〉
αg: ð29Þ

Following a similar approach, the evolution rates can also be
approximated as

∂〈ρα〉
α

∂t
¼ cρ0

∂〈pα〉
α

∂t
¼ cρ0

∂〈Pα〉
α

∂t
: ð30Þ

3. One-pressure model (Darcy's law)

In this section, we will briefly present results obtained in
Whitaker (1986b) which led to the derivation of the one-
pressure model, i.e., Darcy's law. This will facilitate the comparison
between Darcy's law and the two-pressure model developed in the
next section.

3.1. Volume averaging

To obtain the macroscale equations, we average Eqs. (1) and (2).
For the mass balance equation, it yields

∂〈ρα〉

∂t
þ ∇⋅〈ραvα〉¼ 0: ð31Þ

Stokes equation becomes

0¼−∇〈pα〉þ 〈ρα〉g þ μ∇2〈vα〉þ μ∇⋅
1

V

Z

Aα

nαvα dA

$ %

þ
1

V

Z

Aαs

nαs⋅ð−pαIþ μ∇vαÞ dA: ð32Þ

To facilitate solution, we combine the perturbation decomposi-
tion, Eq. (12), the average relations, Eq. (11), the scale constraints,
ℓ≪R≪L, and the thermodynamical relationships, to obtain the
following two equations (for further details, see in Whitaker,
1986b):

∂εα〈ρα〉
α

∂t
þ∇⋅ðεα〈ρα〉

α〈vα〉
αÞ þ∇⋅〈 ~ρα ~vα〉¼ 0; ð33Þ

and

0¼−∇〈pα〉
α þ 〈ρα〉

αg þ μ∇2〈vα〉
α þ

ε−1α
V

Z

Aαs

nαs⋅ð− ~pαIþ μ∇ ~vαÞ dA:

ð34Þ

In addition, we will assume that deviations of the density are
relatively small, ~ρα〉〈ρα〉

α, and that Brinkman's term, μ∇2〈vα〉
α, can

be neglected. These assumptions supply

εα
∂〈ρα〉

α

∂t
þ ∇⋅ð〈ρα〉

α〈vα〉Þ ¼ 0; ð35Þ

and

0¼−∇〈pα〉
α þ 〈ρα〉

αgþ
ε−1α
V

Z

Aαs

nαs⋅ð− ~pαIþ μ∇ ~vαÞ dA: ð36Þ

3.2. Deviations

Rearranging Eq. (12) in the form ~ψ i ¼ ψ i−〈ψ i〉
i suggests that the

initial boundary value problem that describes the behavior of the
perturbations can be obtained by subtracting Eqs. (33) and (34)
from Eqs. (1) and (2), respectively. On assuming quasi-stationarity
of ~ρα and imposing ~ρα≪〈ρα〉

α, the continuity equation yields

∇⋅ ~vα ¼ 0 in Vα; ð37Þ

and the original Stokes problem may be written as

0¼−∇ ~pα þ μ∇2 ~vα

−
ε−1α
V

Z

Aαs

nα⋅ð− ~pαIþ μ∇ ~vαÞ dA in Vα; ð38Þ

with the no-slip boundary condition giving

~vα ¼ −〈vα〉
α

at Aαs: ð39Þ

Given the linearity of the above spatial operators, we can
decompose the deviation fields for the velocity and pressure as

~vα ¼Aα⋅〈vα〉
α; ð40Þ

~pα ¼ μaα⋅〈vα〉
α: ð41Þ

We will refer to the tensor fields Aα and aα as closure parameters
or mapping tensors. Substituting Eqs. (40) and (41) into Eqs. (37)
and (38), we obtain the following boundary value problem:

∇⋅Aα ¼ 0 in Vα; ð42Þ

0¼−∇aα þ ∇2
Aα þ εαK

−1
α in Vα; ð43Þ

Aα ¼ −I at Aαs; ð44Þ

where we have used the definition

εαK
−1
α ¼ −

ε−1α
V

Z

Aαs

nα⋅ð−Iaα þ ∇AαÞ dA: ð45Þ

We will assume that the porous medium structure can be
represented locally by a periodic geometry

Aαðrþ lkÞ ¼AαðrÞ and aαðrþ lkÞ ¼ aαðrÞ with k¼ 1;2;3: ð46Þ

In addition we impose zero-average constraints

〈Aα〉¼ 0 and 〈a0α〉¼ 0; ð47Þ

to ensure that the average of deviations is zero.
For computational purposes, this integro-differential formula-

tion can be simplified to develop a purely differential form where
K

−1
α disappears. The developments are given in Appendix A.

3.3. Macroscale equations

Using Eqs. (40) and (41) into Eq. (36) yields

0¼−∇〈pα〉
α þ 〈ρα〉

αg−μεαK
−1
α ⋅〈vα〉

α; ð48Þ

which can be rearranged to form Darcy's law

〈vα〉¼ −
Kα

μ
⋅ð∇〈pα〉

α−〈ρα〉
αgÞ: ð49Þ

This may be written, with the hydrostatic pressure defined in
Section 2.4, as

〈vα〉¼ −
Kα

μ
⋅∇〈Pα〉

α: ð50Þ

We consider the thermodynamical constraint equation (28) and
the relation equation (30), to obtain

εαc
∂〈Pα〉

α

∂t
þ ∇⋅〈vα〉¼ 0: ð51Þ

Finally, combining Darcy's law with the continuity equation gives
the following one-pressure equation:

εαc
∂〈Pα〉

α

∂t
¼∇⋅

Kα

μ
⋅∇〈Pα〉

α

$ %

: ð52Þ

4. Two-pressure model

In this section, balance equations are averaged over each region
separately (see Section 2.2). The upscaling technique itself is very
similar to the one presented above for the derivation of Darcy's



law, except that our equations involve additional boundaries and
source terms.

4.1. Volume averaging

Averaging Eq. (4) leads to the following macroscale equation

∂〈ρi〉

∂t
þ ∇⋅〈ρivi〉þ

1

V

Z

Aβγ

nij⋅ρivi dA¼ 0; i≠j; ð53Þ

where we have used the indices i and j to represent either the
phase γ or β. In this equation, we have simplified the interface
integral by using the no-slip boundary condition on Ais. For the
momentum balance equation, averaging Eq. (5) leads to (see
Whitaker, 1986a, 1986b, 1994 for more details)

0¼−∇〈pi〉
i þ 〈ρi〉

igþ μ∇2〈vi〉
i

þ
ε−1i
V

Z

Ai

ni⋅ð− ~piIþ μ∇ ~v iÞ dA where i¼ β; γ: ð54Þ

An important feature of this splitting operation is that both
regions may exchange mass. This flux between the two regions is
characterized by the quantity _m, which is defined by

_m ¼
1

V

Z

Aβγ

nβγ ⋅ρβvβ dA¼−
1

V

Z

Aβγ

nγβ⋅ργvγ dA: ð55Þ

We can further expand this expression using the average-
perturbation decomposition to obtain

_m ¼
1

V

Z

Aβγ

nβγ ⋅ ~ρβ ~vβ dAþ
〈ρβ〉

β

V

Z

Aβγ

nβγ ⋅ ~vβ dA

þ
1

V

Z

Aβγ

nβγ ~ρβ dA

!

⋅〈vβ〉
β: ð56Þ

Formally, one should keep all terms involving ~ρ i and link these
perturbations to average values during the closure process. How-
ever, similarly to what was done for Darcy's law, we will facilitate
the analysis by imposing the order of magnitude slightly com-
pressible constraint ~ρ i≪〈ρi〉

i and neglecting terms involving ~ρ i.
With these considerations, the mass exchange rate may be
expressed as

_m ¼
ρ0

V

Z

Aβγ

nβγ ⋅ ~vβ dA¼−
ρ0

V

Z

Aβγ

nγβ⋅ ~vγ dA: ð57Þ

Using the above expressions in conjunction with Eq. (30), we
obtain the two coupled continuity equations

c
∂〈Pβ〉

β

∂t
þ ∇⋅〈vβ〉

β ¼ −ε−1β
_m

ρ0
; ð58Þ

c
∂〈Pγ〉

γ

∂t
þ ∇⋅〈vγ〉

γ ¼ ε−1γ
_m

ρ0
: ð59Þ

At this point of the developments, we have obtained the
macroscale equations that describe mass and momentum trans-
port within bi-structured porous media. However, these equations
are not in a closed form since Eqs. (58), (59) and (54) contain
terms involving the velocity and pressure fluctuations, ~p i and ~v i. In
order to eliminate these quantities from the macroscale equations,
we will follow a procedure based on closure variable decomposi-
tions (similar to Darcy's law derivation).

4.2. Deviations

The first step towards a solution is to determine the boundary
value problems that describe the perturbations behavior. This may
be done by subtracting Eq. (58) from Eq. (4) in order to obtain

∇⋅ ~v i ¼
ε−1i
V

Z

Ai

ni⋅ ~v i dA in V i where i¼ β; γ: ð60Þ

In this equation, we have neglected terms involving ~ρi. We remark
that, in the upscaling literature, most derivations make the
assumption that mass exchange can be neglected at the microscale
and, therefore, _m may be discarded in these developments. For
instance, this is the case in Whitaker (1986b, 1994) and Lasseux
et al. (1996, 2008) in which the right-hand side of Eq. (60) has
been eliminated. In this work, our goal is to develop a model that
may be used to describe mass exchange processes so that we have
kept these terms in the developments.

We can use a similar procedure for the momentum balance
equation. This is done by subtracting Eq. (34) from Eq. (5) and
neglecting higher order terms. The result of this operation is

0¼−∇ ~pi þ μ∇2 ~v i−
ε−1i
V

Z

Ai

ni⋅ð− ~p iIþ μ∇ ~v iÞ dA

in V i with i¼ β; γ; ð61Þ

and the no-slip boundary condition reads

~v i ¼−〈vi〉
i

at Ais; i¼ β; γ: ð62Þ

Continuity conditions for pressures and velocities at the interface
Aβγ supply

~vβ ¼ ~vγ−ð〈vβ〉
β−〈vγ〉

γÞ at Aβγ ; ð63Þ

~pβ ¼ ~pγ−ð〈pβ〉
β−〈pγ〉

γÞ at Aβγ : ð64Þ

To ensure uniqueness of solutions, we impose the solvability
condition

〈 ~v i〉
i ¼ 0 and 〈 ~p i〉

i ¼ 0 with i¼ β; γ; ð65Þ

and use local periodic conditions for the deviations

~v iðr þ lkÞ ¼ ~v iðrÞ and ~piðr þ lkÞ ¼ ~p iðrÞ

with i¼ β; γ and k¼ 1;2;3: ð66Þ

At this stage, we may identify three macroscale source terms in
the above boundary value problem (〈vβ〉β , 〈vγ〉γ and 〈pβ〉

β−〈pγ〉
γ).

Given the linearity of the spatial operators, we can express velocity
perturbations as

~vβ ¼Aββ⋅〈vβ〉
β þ Aβγ ⋅〈vγ〉

γ þ
Bβ

μ
ð〈pβ〉

β−〈pγ〉
γÞ; ð67Þ

and

~vγ ¼Aγβ⋅〈vβ〉
β þ Aγγ ⋅〈vγ〉

γ þ
Bγ

μ
ð〈pβ〉

β−〈pγ〉
γÞ: ð68Þ

A similar decomposition for pressure perturbations can be written
as

~pβ ¼ μ½aββ⋅〈vβ〉
β þ aβγ ⋅〈vγ〉

γ ) þ bβð〈pβ〉
β−〈pγ〉

γÞ; ð69Þ

~pγ ¼ μ½aγβ⋅〈vβ〉
β þ aγγ ⋅〈vγ〉

γ ) þ bγð〈pβ〉
β−〈pγ〉

γÞ: ð70Þ

Similarly to Darcy's law, we will refer to Aij, Bi, aij and bi as
mapping or closure variables. In these equations, Aij are second
order tensors; Bi and aij are first order tensors; and bi are scalars.
For simplicity, we have used notations similar to those adopted in
Whitaker (1994) and Lasseux et al. (1996) when dealing with two-
phase problems. We will see in Section 4.4.4 and Appendix B.1 that
connections exist between these works and the present study; so
that the corresponding boundary value problems can be expressed
in a similar form and readily compared.

4.3. Equations for the closure variables

At this point, we have obtained an explicit decomposition of
the perturbations that can be substituted into Eqs. (67)–(70) and
into Eqs. (60)–(66) in order to decouple the mapping variables
from the macroscale equations. Assuming linear independence of
the source terms, we can collect terms involving 〈vβ〉

β , 〈vγ〉γ and



〈pβ〉
β−〈pγ〉

γ separately. The corresponding boundary value pro-
blems are detailed below.

4.3.1. Mapping onto 〈vβ〉
β and 〈vγ〉

γ

Identification of terms involving 〈vβ〉
β yields

Problem I

0¼−∇aiβ þ∇2
Aiβ−

ε−1i
V

Z

Ai

ni⋅ð−Iaiβ þ ∇AiβÞ dA

in V i with i¼ β; γ; ð71Þ

and

∇⋅Aiβ ¼
ε−1i
V

Z

Aγβ

ni⋅Aiβ dA in V i with i¼ β; γ: ð72Þ

The boundary conditions may be written as

Aββ ¼−I at Aβs; ð73Þ

Aγβ ¼ 0 at Aγs; ð74Þ

Aββ ¼Aγβ−I at Aβγ ; ð75Þ

and

aββ ¼ aγβ at Aβγ : ð76Þ

To ensure uniqueness of solutions, we also have the periodicity
conditions

Aiβðrþ lkÞ ¼AiβðrÞ and aiβðrþ lkÞ ¼ aiβðrÞ

with i¼ β; γ and k¼ 1;2;3; ð77Þ

and the solvability conditions

〈Aiβ〉
i ¼ 0 and 〈aiβ〉

i ¼ 0 with i¼ β; γ: ð78Þ

Similarly, identification of terms involving 〈vγ〉
γ yields

Problem II

0¼−∇aiγ þ ∇2
Aiγ−

ε−1i
V

Z

Ai

ni⋅ð−Iaiγ þ ∇AiγÞ dA

in V i with i¼ β; γ; ð79Þ

and

∇:Aiγ ¼
ε−1i
V

Z

Aγβ

ni⋅Aiγ dA in V i with i¼ β; γ: ð80Þ

The boundary conditions may be written as

Aβγ ¼ 0 at Aβs; ð81Þ

Aγγ ¼−I at Aγs; ð82Þ

Aβγ ¼Aγγ þ I at Aβγ ; ð83Þ

and

aβγ ¼ aγγ at Aβγ : ð84Þ

To ensure uniqueness of solutions, we also have the periodicity
conditions

Aiγðr þ lkÞ ¼AiγðrÞ and aiγðr þ lkÞ ¼ aiγðrÞ

with i¼ β; γ and k¼ 1;2;3; ð85Þ

and the solvability conditions

〈Aiγ〉
i ¼ 0; 〈aiγ〉

i ¼ 0 with i¼ β; γ: ð86Þ

Apart from the additional exchange terms in the continuity
equations, these closure problems are similar to those derived by
Whitaker (1994) in the case of two-phase flow in homogeneous
porous media. Following this paper, we define permeabilities

Kβ and Kγ and coupling tensors Kγβ and Kβγ as

εβK
−1
β ¼−

ε−1β

V

Z

Aβ

nβ⋅ð−Iaββ þ ∇AββÞ dA; ð87Þ

εγK
−1
β ⋅Kβγ ¼

ε−1β

V

Z

Aβ

nβ⋅ð−Iaβγ þ ∇AβγÞ dA; ð88Þ

εβK
−1
γ ⋅Kγβ ¼

ε−1γ

V

Z

Aγ

nγ ⋅ð−Iaγβ þ ∇AγβÞ dA; ð89Þ

and

εγK
−1
γ ¼ −

ε−1γ

V

Z

Aγ

nγ ⋅ð−Iaγγ þ ∇AγγÞ dA: ð90Þ

These definitions, although not necessarily obvious at first, sig-
nificantly facilitate future mathematical developments of the
macroscale equations. Further, following Lasseux et al. (1996),
we will use K

n

ββ , K
n

βγ , K
n

γγ and K
n

γβ which are defined by

K
n

ββ ¼ ðI−Kβγ ⋅KγβÞ
−1
⋅Kβ; ð91Þ

K
n

βγ ¼ ðI−Kβγ ⋅KγβÞ
−1
⋅Kβγ ⋅Kγ ; ð92Þ

K
n

γγ ¼ ðI−Kγβ⋅KβγÞ
−1
⋅Kγ ; ð93Þ

and

K
n

γβ ¼ ðI−Kγβ⋅KβγÞ
−1⋅Kγβ⋅Kβ: ð94Þ

We will also use

χ ij ¼
1

V

Z

Aγβ

ni⋅Aij dA with i; j¼ β; γ; ð95Þ

and the relations

χ ββ ¼−χ γβ and χ βγ ¼ −χ γγ : ð96Þ

4.3.2. Mapping onto 〈pβ〉
β−〈pγ〉

γ

Collecting terms involving 〈pβ〉
β−〈pγ〉

γ yields
Problem III

0¼−∇bi þ ∇2Bi−K
−1
i ⋅Πi in V i with i¼ β; γ; ð97Þ

∇⋅Bβ ¼ ε−1β h in Vβ ; ð98Þ

∇⋅Bγ ¼ −ε−1γ h in V γ ; ð99Þ

with the boundary conditions

Bi ¼ 0 at Ais with i¼ β; γ; ð100Þ

Bβ ¼ Bγ at Aβγ ; ð101Þ

bβ ¼ bγ−1 at Aβγ : ð102Þ

Uniqueness of solutions is also ensured by local periodicity, i.e.,

Biðrþ lkÞ ¼ BiðrÞ and biðr
þ lkÞ ¼ biðrÞ with i¼ β; γ and k¼ 1;2;3; ð103Þ

and the solvability conditions

〈Bi〉
i ¼ 0; 〈bi〉

i ¼ 0 with i¼ β; γ: ð104Þ

In these equations, we have used the notations

K
−1
i ⋅Πi ¼ −

ε−1i
V

Z

Ai

ni⋅ð−biIþ ∇BiÞ dA; ð105Þ

and

h¼
1

V

Z

Aβγ

nβγ ⋅Bβ dA¼ −
1

V

Z

Aβγ

nγβ⋅Bγ dA: ð106Þ



We have also defined Π
n

i as

Π
n

β ¼ ðI−Kβγ ⋅KγβÞ
−1
⋅ðΠβ þ Kβγ ⋅ΠγÞ; ð107Þ

and

Πn

γ ¼ ðI−Kγβ⋅KβγÞ
−1
⋅ðΠγ þ Kγβ⋅ΠβÞ: ð108Þ

4.4. Macroscale models

Herein, we use the above developments and the expressions of
the deviations to obtain closed forms of the macroscale equations.

4.4.1. Macroscale equations for regional velocities

To obtain macroscale equations for regional velocities, we use
Eqs. (67)–(70) into Eq. (54) and multiply each equation by Ki. The
result of this operation is

〈vβ〉¼ −
Kβ

μ
⋅ð∇〈pβ〉

β−〈ρβ〉
βgÞ þ Kβγ ⋅〈vγ〉þΠβð〈pβ〉

β−〈pγ〉
γÞ; ð109Þ

and

〈vγ〉¼−
Kγ

μ
⋅ð∇〈pγ〉

γ−〈ργ〉
γgÞ þ Kγβ⋅〈vβ〉þΠγð〈pβ〉

β−〈pγ〉
γÞ: ð110Þ

Further, we can use hydrostatic pressures and simple linear
algebra to obtain

〈vβ〉¼ −
K

n

ββ

μ
⋅∇〈Pβ〉

β−
K

n

βγ

μ
⋅∇〈Pγ〉

γ þΠ
n

βð〈Pβ〉
β−〈Pγ〉

γÞ; ð111Þ

and

〈vγ〉¼−
K

n

γβ

μ
⋅∇〈Pβ〉

β−
K

n

γγ

μ
⋅∇〈Pγ〉

γ þΠ
n

γ ð〈Pβ〉
β−〈Pγ〉

γÞ: ð112Þ

We remark that these equations are similar to those derived in
Quintard and Whitaker (1998) for the large scale averaging of
Darcy's law in heterogeneous porous media. However, (1) the
macroscale equations obtained in Quintard and Whitaker (1998)
apply to the large-scale whereas our developments apply to the
Darcy-scale and (2) the derivation in Quintard and Whitaker
(1998) is based on the upscaling of Darcy's law whereas our
developments are based on the upscaling of Stokes problem.
Therefore, effective parameters have a different micro-scale
definition.

4.4.2. Macroscale continuity equations and mass exchange rate

Recall that the mass balance equations derived in Section 4
read

εβc
∂〈Pβ〉

β

∂t
þ ∇⋅〈vβ〉¼ −

_m

ρ0
; ð113Þ

and

εγc
∂〈Pγ〉

γ

∂t
þ ∇⋅〈vγ〉¼

_m

ρ0
: ð114Þ

A closed form of the mass exchange rate, _m, can be obtained by
substituting Eq. (67) into Eq. (57)

_m

ρ0
¼−χ γβ⋅〈vβ〉þ χ βγ ⋅〈vγ〉þ

h

μ
ð〈Pβ〉

β−〈Pγ〉
γÞ: ð115Þ

We can further use the expressions of the regional velocities,
Eqs. (111) and (112), to obtain

_m

ρ0
¼−χ

n

γβ⋅∇〈Pβ〉
β þ χ

n

βγ ⋅∇〈Pγ〉
γ þ

hn

μ
〈Pβ〉

β−〈Pγ〉
γ

( )

; ð116Þ

where

hn
¼ h−με−1β χ γβ⋅Π

n

β þ με−1γ χ βγ ⋅Π
n

γ ; ð117Þ

χ
n

γβ ¼ −ε−1β χ γβ⋅
K

n

ββ

μ
þ ε−1γ χ βγ ⋅

K
n

γβ

μ
; ð118Þ

and

χ
n

βγ ¼ −ε−1β χ γβ⋅
K

n

βγ

μ
þ ε−1γ χ βγ ⋅

K
n

γγ

μ
: ð119Þ

4.4.3. Macroscale equations for the pressure

We form the macroscale equations that govern the pressure
fields by using Eqs. (111), (112) and (116) into Eqs. (58) and (59).
This leads to the following two-pressure model with mass
exchange

εβc
∂〈Pβ〉

β

∂t
−χ

n

γβ⋅∇〈Pβ〉
β þ χ

n

βγ ⋅∇〈Pγ〉
γ þ∇⋅ðΠn

βð〈Pβ〉
β−〈Pγ〉

γÞÞ

¼∇⋅
K

n

ββ

μ
⋅∇〈Pβ〉

β

 !

þ ∇⋅
K

n

βγ

μ
⋅∇〈Pγ〉

γ

!

−
hn

μ
ð〈Pβ〉

β−〈Pγ〉
γÞ; ð120Þ

εγc
∂〈Pγ〉

γ

∂t
þ χ

n

γβ⋅∇〈Pβ〉
β−χ

n

βγ ⋅∇〈Pγ〉
γ þ ∇⋅ðΠn

γ ð〈Pβ〉
β−〈Pγ〉

γÞÞ

¼∇⋅
K

n

γβ

μ
⋅∇〈Pβ〉

β

 !

þ ∇⋅
K

n

γγ

μ
⋅∇〈Pγ〉

γ

!

þ
hn

μ
ð〈Pβ〉

β−〈Pγ〉
γÞ: ð121Þ

Effective properties of this model can be determined by resolution
of the three integro-differential problems derived in Section 4.
Because of the complexity involved, we develop in the next
section a method to evaluate the effective properties for the
simpler case in which the mass exchange term depends only on
the average pressure difference.

4.4.4. Simplified macroscale model

In this section, we propose further simplifications of the above
macroscale equations. At leading order, _m is governed by the
pressure difference and can be approximated, following Eq. (116),
by:

_m

ρ0
≈
h

μ
ð〈Pβ〉

β−〈Pγ〉
γÞ: ð122Þ

In this case, χ ij in Eqs. (120) and (121) are neglected and the
continuity equations in the closure Problems I and II become
divergence-free. Furthermore, we remark that several closure
problems developed in this work (see Appendix B.1) may simplify
to those derived for the two-phase flow configuration (see
Whitaker, 1986a, 1994 or Lasseux et al., 1996), so that the
macroscale parameters K

n

ij can be determined directly from the
mapping fields of the two-phase flow problem. In addition, the
values of the exchange parameters h and Π

n

i may be directly

Table 1

Comparison of the upscaling procedure used in Quintard and Whitaker (1996) with

the present work. In the former study, the authors investigated fluid flow through

heterogeneous porous media described at a “large-scale”. They first averaged

Stokes problem to form Darcy's law and then averaged Darcy's law on a larger

scale to obtain the two-pressure model. In the present study, we directly derive a

two-pressure model at the Darcy-scale from Stokes equations. Therefore, our model

is an alternative to the classical Darcy's law and covers a larger set of bi-structured

media including systems for which the two-step upscaling procedure is not

possible.

Scale Quintard and Whitaker (1996) Present work

Pore-scale Stokes problem Stokes problem

Darcy-scale One-pressure model Two-pressure model

(Darcy's law)

closure: pore-scale,

one problem

closure: pore-scale,

3 problems

Large-scale Two-pressure model –

closure: Darcy-scale, 3 problems



determined using a transformation of the integro-differential
Problem III (see Appendix B.2). With this approximation (Eq.
(122)) the macroscale model for the averaged pressures becomes

εβc
∂〈Pβ〉

β

∂t
þ∇⋅ðΠn

βð〈Pβ〉
β−〈Pγ〉

γÞÞ

¼∇⋅
K

n

ββ

μ
⋅∇〈Pβ〉

β

!

þ∇⋅
K

n

βγ

μ
⋅∇〈Pγ〉

γ

!

−
h

μ
ð〈Pβ〉

β−〈Pγ〉
γÞ; ð123Þ

εγc
∂〈Pγ〉

γ

∂t
þ ∇⋅ðΠn

γ ð〈Pβ〉
β−〈Pγ〉

γÞÞ

¼∇⋅
K

n

γβ

μ
⋅∇〈Pβ〉

β

 !

þ ∇⋅
K

n

γγ

μ
⋅∇〈Pγ〉

γ

!

þ
h

μ
ð〈Pβ〉

β−〈Pγ〉
γÞ: ð124Þ

This model is reminiscent of the developments of Quintard and
Whitaker (1996) for the problem of flow through heterogeneous
porous media with a two-step upscaling procedure (Stokes to
Darcy and Darcy to large-scale). An interesting feature of the
present work is to provide a solid theoretical framework for the
direct derivation of this model with a one-step averaging proce-
dure from the pore-scale Stokes problem. As a consequence,
effective properties in the proposed model are obtained from a
completely different closure involving pore-scale instead of Darcy-
scale characteristics. Table 1 summarizes the comparison between
the two developments.

Furthermore, if we consider a case for which the coupling
terms are relatively small, i.e., if Kn

γβ ;K
n

βγ≪K
n

γγ ;K
n

ββ , and the Π
n

i can
be neglected, we recover exactly the model proposed empirically
by Barenblatt et al. (1960) for larger scales

cεβ
∂〈Pβ〉

β

∂t
¼∇⋅

Kβ

μ
⋅∇〈Pβ〉

β

$ %

−
h

μ
ð〈Pβ〉

β−〈Pγ〉
γÞ; ð125Þ

cεγ
∂〈Pγ〉

γ

∂t
¼∇⋅

Kγ

μ
⋅∇〈Pγ〉

γ

$ %

þ
h

μ
ð〈Pβ〉

β−〈Pγ〉
γÞ: ð126Þ

5. Validation against direct numerical simulations

for a simplified particle filter

In order to illustrate the proposed theory, we apply it in this
section to a 2D model problem which may be thought of as a
simplified particle tangential filter. Our goal is to examine numeri-
cally the applicability of the two-pressure model to the flow of an
incompressible and a slightly compressible fluid within this
particle filter. We will present solutions of the two- and one-
pressure models and compare these macroscale results with the
solution of the microscale problem. Computations were all per-
formed with the finite volume CFD toolbox OpenFOAMs.

5.1. Microscale geometry and models

The 2D geometry of the porous structure consists of a succes-
sion of 32 identical elements or unit-cells (see Fig. 4). The mesh
contains 358 400 hexahedral cells, i.e., 11 200 cells per represen-
tative elementary volume. For boundary conditions, we impose a
Dirichlet condition for the velocity v0 or pressure pinlet at the top
left, a Dirichlet condition for pressure p0 at the bottom right and
no-slip conditions everywhere else. Note that, if the velocity and
pressure conditions were applied to the entire top and bottom
boundaries, we would generate a classical quasi-steady flowwhich
could be described by a single macroscale Darcy-equation. In our
case, the velocity and pressure boundary conditions induce an
exchange flux between both left and right domains. Therefore, we
split the porous medium into two distinct regions: the left hand-
side β&region with the input velocity condition and the right
hand-side γ&region with the output pressure boundary condition.

Incompressible fluid. We will first focus on the case of an
incompressible fluid flow at steady-state. The purpose of these
simulations is to illustrate that the two-pressure formulation may
be necessary even at steady-state, in order to capture non-
equilibrium effects induced by the boundary conditions. In con-
junction with Stokes equation (with negligible gravitational
effects) and the boundary conditions described above, we use
the following continuity equation for an incompressible fluid:

∇⋅vα ¼ 0 in Vα; ð127Þ

where vα is the velocity field in the whole domain. We use the
following set of parameters v0 ¼ 10−5 m=s, ρ¼ 103 kg=m3,
μ¼ 10−3 kg=m=s. For these parameters, we calculated a Reynolds
number of ≈0:1 which is in the creeping flow regime and is
therefore in agreement with the assumptions of our model. Since
the flow is assumed to be at steady-state, we used the SIMPLE
pressure–velocity coupling procedure developed by Patankar
(1980) to solve the Stokes problem.

Slightly compressible fluid. As a second step, we test our theory
in the case of a slightly compressible fluid flowing through the
“particle filter”. The pore-scale simulations are obtained by solving
the transient boundary value problem described in Section 2.1 by
Eqs. (1)–(3). The pore-scale thermodynamical law reads

ρα ¼ ρ0½1þ cðpα−p
0Þ); ð128Þ

where the reference pressure, the compressibility coefficient and
the reference density are p0 ¼ 0 kg=m=s2, c¼0.55 and
ρ0 ¼ 103 kg=m3, respectively. As for the incompressible case, the
fluid viscosity is μ¼ 10−3 kg=m=s. The problem is solved using a
PISO algorithm (Issa, 1985). To avoid complications regarding
acoustic waves propagation in porous media, which is beyond
the scope of this paper (readers interested in such phenomena can
refer to Bourbié et al., 1987), we consider a pressure ramp at the
input of the device, pinlet ¼ p0inletð1−e

−t=τÞwith p0inlet ¼ 10−4 kg=m=s2,
τ¼ 100 s and zero initial conditions. We run calculations up to
600 s which correspond to fully established steady state regimes.

5.2. Effective properties, macroscale geometry and models

The macroscale geometry that corresponds to the 2D filter is a
1D segment, 0:384 m long, containing 32 cells. The first step
towards solution is to evaluate the effective properties from the
resolution of the closure Problems I′, II′ and III′ provided in
Appendix B over the unit-cell (Fig. 4). OpenFOAMs and a SIMPLE
algorithm were used to obtain: Πn

βy
¼−Πn

γy
¼ 4* 10−16 m2 s=kg,

h¼ 7:8* 10−4, K
n

ββyy
¼K

n

γγyy
¼ 4:1* 10−6 m2 and K

n

βγyy
¼ K

n

γβyy

¼ 1:3* 10−9 m2 (where y is the streamwise direction). We remark
that the terms K

n

βγyy
, Kn

γβyy
and Π

n

α are relatively small and play a
minor role in this particular case (something we have verified

Fig. 4. Schematics of the unit-cell geometry, the two-regions and the boundaries.



numerically), something which is not general as will be empha-
sized in Section 6 for a different unit-cell geometry. In the
incompressible case, the one-dimensional steady-state set of
coupled equations (123) and (124) is solved while in the slightly
compressible case we use its one-dimensional transient formula-
tion. In both cases, these equations are solved sequentially and the
regional velocities are obtained via Eqs. (109) and (110). Boundary
conditions are analogous to the microscopic ones. Their values are

adjusted to correspond to the average values in the vicinity of the
inlet and outlet of the microscale models (Prat, 1989).

5.3. Results for the incompressible flow

Results for the pressure and velocity fields are plotted in
Figs. 5 and 6, respectively. The average direct numerical simulation
(DNS) curves were obtained by explicitly solving the microscale

Fig. 5. Plots of the average pressure fields (top) and of the microscale pressure field (bottom) along the filter. This figure shows that: (1) both macroscale and average DNS

results are in good agreement and (2) Darcy's model fails to describe non-equilibrium effects induced by boundary conditions.

Fig. 6. Plots of the average velocity fields (top) and of the microscale velocity field (bottom) along the filter. This figure shows that: (1) both macroscale and average DNS

results are in good agreement and (2) Darcy's model fails to describe non-equilibrium effects induced by boundary conditions.



problem presented in Section 5.1 and then volume averaging the
pressure/velocity fields within the β and γ regions over each unit-
cell. These results will be considered as an exact solution of the
problem and serve as a reference for comparison. Macroscale
pressures were obtained by solving Eqs. (123) and (124) at
steady-state and velocities were determined using Eqs. (109) and
(110).

As mass, momentum and pressure are exchanged between the
two domains, we see in Fig. 6 that the magnitude of the velocity
field in the β&region decreases along the y-axis while it increases
in the γ&region. In the middle, because of the symmetry of the
problem, the velocity fields of both regions are equal. This
situation is usually referred to as local equilibrium in the multi-
scale analysis literature. Similarly, the pressure also equilibrates in
the middle (see Fig. 5). In both cases, we remark that the two-
pressure model provides an excellent representation of the parti-
cle filter as average pressure and velocity fields are in very good
agreement. This simulation also emphasizes the importance of the
boundary conditions and illustrates the fact that non-equilibrium
of velocity/pressure fields may result from a choice of particular
boundary conditions, even at steady-state. This non-equilibrium
effect is particularly obvious in Fig. 7 in which we have plotted the
mass exchange rate, _m, defined by Eq. (122), as a function of y. The
largest values of the mass exchange rate are at the top and the

bottom of the system, where boundary conditions are important,
and we have _m≈0 in the middle where both average pressure/
velocity fields are almost equal.

In addition, we also remark that such non-equilibrium effects
cannot be captured by a one-pressure model and the correspond-
ing single Darcy's law. Indeed, the Darcy velocity is constant along
the particle filter because the velocity field is divergence free in
the macroscale continuity equation. Hence, this model will fail to
describe exchange phenomena between the two regions and is not
adapted to the description of flow within this specific structure.
This may further impact the evaluation of heat and solute disper-
sion within such systems; information that are particularly useful
to engineers in the field.

5.4. Results for the slightly compressible flow

We finally analyze the case of a slightly compressible fluid and use
a similar methodology to compare results of macroscale and micro-
scale simulations. Since our goal here is to assess the behavior of the
two-pressure model in a transient situation, wewill primarily focus on
time representations of average values evaluated at a fixed point of
space for the two-pressure, one-pressure and DNS models. Average
pressure and velocity values are plotted in Figs. 8 and 9 for the 30th
cell. Results show that the overall agreement between the two-

Fig. 7. Plot of the mass exchange term ð _mÞ along the vertical axis. This figure shows

that a local non-equilibrium situation is generated by the inlet and outlet

boundaries.

Fig. 8. Plots of the evolution of the average pressure for the 30th cell. This figure

shows that the two-pressure model captures correctly the transient behavior of the

average pressure.

Fig. 9. Plots of the evolution of the average velocity magnitude for the 30th cell.

This figure shows that the two-pressure model captures correctly the transient

behavior of the average velocity.

Fig. 10. Plot of the mass exchange coefficient, _m , along the vertical axis for several

simulation times. This figure shows that non-equilibrium rapidly grows in the

vicinity of the inlet and outlet boundaries.



pressure model and the DNS results is excellent. In Fig. 10, we have
plotted the mass exchange rate along the vertical axis for several
times, to illustrate the evolution of the non-equilibrium conditions.
Because of the zero initial conditions used here, we remark that local
non-equilibrium rapidly appears in the vicinity of the input and the
output boundary conditions.

6. Potential importance of coupling cross-terms

In the previous section, we have shown that the two-pressure
macroscale model can capture non-equilibrium phenomena induced
by boundary conditions. In this application, the area of the interface
which separates both pseudo-phases was small compared with the
size of the unit-cell and the flow through the βγ&interface was mainly
perpendicular to the interface. As a consequence, the coupling terms
K

n

γβ and K
n

βγ were negligible. However, this might not be the case in all
configurations and, to emphasize the importance of these coupling
terms, we have performed simulations for a dual porous medium
model as suggested in Fig. 2. This geometry does not reproduce an
actual system and was essentially chosen to enhance viscous interac-
tion between the split phases.

6.1. Geometry and phase splitting

The geometry of the 3D unit-cell used in this section (see in
Fig. 11a) consists of solid impermeable beads embedded within a
rectangular cuboid (18 mm*18 mm*23 mm). Two layers of
beads are superimposed. The bottom layer contains nine small
beads of equal size (radius¼2 mm) that are regularly arranged in
the same xOy section. The top layer contains a single larger bead
(radius¼6 mm). The total porosity (fluid volume fraction) of this
system was estimated as ε≈0:84. Phase splitting was performed as
illustrated in Fig. 11b, in order to capture the bi-modal nature of
the regional porosities and of the amplitude of the velocity field.
Regional porosities were as follows, εγ≈0:61 and εβ≈0:23. For flow
calculations, we used a mesh of approximately 420 000 cells
(refined close to the beads wall). Top and bottom boundaries of
the cuboid were treated as walls ðv¼ 0Þ, while the lateral faces
were periodic.

6.2. Calculation of the velocity field in the periodic unit-cell

To evaluate the velocity field within the representative unit-cell,
we impose a macroscopic pressure gradient by introducing a source

Fig. 11. (a) Schematics of the 3D unit-cell geometry and its dimensions and (b) description of the phase splitting.

Fig. 12. The velocity field within the unit-cell (a) exhibits a large distribution in which amplitudes vary from 0 to 1.2*10−3 m/s. Further, the distribution is bi-modal as

amplitudes in the top layer (b) are about 10 times larger than in the vicinity of the smaller beads (c).



term ððΔP=LÞe0) into the momentum equation of the Stokes problem
(gravity neglected). The unit vector e0 fixes the orientation while
ΔP=L corresponds to its magnitude. Fluid flow is assumed to be
incompressible and at steady-state. The problem was solved using
the SIMPLE pressure–velocity coupling procedure proposed by
Patankar (1980) with a convergence criterion residuals≤10−8. Para-
meters were as follows: e0 ¼ ex, ΔP=L¼ 1 Pa=m, ρ¼ 1000 kg=m3

and μ¼ 10−2 kg=m=s2. We further remark that this set of parameters
implies a creeping flow regime.

The magnitude of the velocity fields, plotted for cross sections
in Fig. 12, was in the range ½0;1:22* 10−3 m=s). Further, we remark
that the distribution exhibits a bi-modal distribution, with rela-
tively large amplitudes (Fig. 12b) in the top layer and an order of
magnitude smaller amplitudes in the bottom layer (Fig. 12c).
Averaging the velocity field yields, the following regional velocities
〈vβx 〉¼ 3:65* 10−5 m=s and 〈vγx 〉¼ 3:10* 10−4 m=s, while the
Darcy velocity is equal to 〈vαx 〉¼ 3:47* 10−4 m=s, i.e., closer to
the value of the “rapid” region.

6.3. Effective parameters and macro-scale model

To compare the results of the microscale simulation against those
of the two-pressure model, we first calculated the effective parameters
by solving the closure Problems I′–III′ provided in Appendix B.

Procedures described in Section 5 were used to obtain Πn

βx
¼ −Πn

γx
¼

−2:4* 10−9 m2s=kg, h¼ 1:63* 10−2, K
n

ββxx
¼ 1:92* 10−7 m2,

K
n

γγxx
¼ 2:94* 10−6 m2, and K

n

βγxx
¼K

n

γβxx
¼ 1:74* 10−7 m2. We

remark that the coupling terms K
n

γβ and K
n

βγ are, this time, of the

same order of magnitude as Kn

ββ and, therefore, cannot be neglected.
The macroscale geometry consists in a 1D segment, 1 m long.

We consider uniform Dirichlet pressure boundary conditions for
both the γ and β regions (pβinlet ¼ pγinlet ¼ pinlet ¼ 1 Pa, pβoutlet ¼

pγoutlet ¼ 0 Pa). We can easily show that, at steady-state

pβðxÞ ¼ pγðxÞ ¼
ΔP

L
xþ pinlet with ΔP ¼ poutlet−pinlet ð129Þ

are solutions of the macroscale problem made of Eqs. (123) and
(124) in 1D and the above mentioned Dirichlet boundary condi-
tion. Consequently, from Eqs. (111) and (112), one deduces that the
regional velocities are constant in the whole 1D domain and are,

respectively, equal to

〈vβx〉¼ −
ðKββx

þ Kβγx
Þ

μ

ΔP

L
; ð130Þ

〈vγx〉¼−
ðKγβx

þ Kγγx
Þ

μ

ΔP

L
: ð131Þ

The histogram (Fig. 13) shows good agreement between the
average velocities calculated from the cyclic microscale simulation
and those estimated through the analytical macroscopic law
equations (130) and (131) (less than 0.1% relative error). Further,
in order to emphasize the role played by the coupling terms, we
also calculated average velocities from Eqs. (130) and (131) in
which K

n

γβ and K
n

βγ were neglected. Results are presented in Fig. 13
and show that the average velocities of the γ and β regions are this
time underestimated by 5.5% and 48%, respectively.

7. Conclusion

In this paper, we have used the method of volume averaging to
derive a macroscale model for the flow of a slightly compressible
fluid within bi-structured porous media. The result of this procedure
is a two-pressure equation model involving several permeability
tensors, a mass exchange coefficient and additional convective
transport terms entirely determined by three closure problems to
be solved over unit cells representative of the pore-scale problem.

If applied to a system that can be dealt with through the two-
step upscaling procedure sketched in Fig. 1, the results of this
paper provide a solid theoretical basis for a generalization of the
model that was derived empirically in Barenblatt et al. (1960) for
the flow of a fluid in heterogeneous porous media, and is also
coherent with the developments performed in Quintard and
Whitaker (1996) for the large-scale homogenization of Darcy's
law in heterogeneous media. However, the initial starting points
are different: Darcy's law in dual porous media on one side, Stokes
equations in our case. As a consequence, the calculation of the
effective parameters such as the regional permeabilities and the
mass exchange term are performed in a different way. The
proposed theory can also deal with dual-media that do not fit in
the two-step framework (Fig. 1), hence the introduced concept
of bi-structured media. Indeed, the theoretical developments and
models were successfully compared to pore-scale direct numerical
simulations in the case of a simplified particle filter geometry,
which typically does not correspond to a traditional dual-medium
(i.e., Fig. 1).

Future work will focus on unsaturated flow in bi-structured
porous media. Such an extension of the present theory will supply
a solid background to simulate gas–liquid flow in structured
packings. Other transport mechanisms may also be investigated,
such as mass or thermal dispersion, etc. All the associated macro-
scale models will involve regional velocities that might be pro-
vided by the theory presented in this paper.

Nomenclature

〈 ' 〉i intrinsic average for the i-phase

〈 ' 〉 superficial average
εi volume fraction of the i-phase
V volume defining the unit-cell (m3)
Vi volume of the i-phase within the unit-cell (m3)
Ai interfacial area in contact with the i-phase (m2)
Ais interfacial area between the i-phase and the solid

phase (m2)
Aβγ interfacial area between the two ficticious phases

(m2)

Fig. 13. Comparison of average velocities for the microscale and macroscale

simulations, with and without the coupling terms. Pore-scale and complete

macroscale results are in very good agreement whereas simulations without the

coupling terms yield an error of up to 48%.



ρi density in the i-phase (kg/m3)

ρ0 reference density (kg/m3)

c compressibility coefficient
g gravitational acceleration (m/s2)
vi Velocity of the i-phase (m/s)
pi pressure field of the i-phase (kg/m/s2)
Pi hydrostatic pressure field within the i-phase (kg/

m/s2)
p0 reference pressure (kg/m/s2)
μ, μi fluid viscosity (kg/m/s)
li characteristic length of the pore-scale (m)
L characteristic length of the macro-scale (m)
ri position vector (m)

Aij, A
0
ij, B

1
i ,

B
2
i

closure variables (second order tensor)

aij, a
0
ij, B

0
i , b

1
i ,

b
2
i

closure variables (first order tensor)

bi closure variables (scalar)
Ki permeability tensor (m2)
Kij viscous drag tensor (m2)

K
n

ij
multi-domain permeability tensor (m2)

h;hn mass exchange coefficient

_m mass exchange rate (kg/m3/s)

χ
n

ij;Πi;Π
n

i velocity-like coefficient (m/s)

χ ij effective parameter (m−1)
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Appendix A. Simplifications of the closure problems:

one-pressure model

In this appendix, we provide a simplified version of the closure
problems, which is more adapted to numerical computations. Our
goal is to eliminate the integrals and obtain a purely local form of
the boundary value problems. To this end, we use the following
decompositions:

aα ¼−a0α ⋅ε
−1
α K

−1
α ; ðA:1Þ

Aα ¼−A0
α ⋅ε

−1
α K

−1
α þ I; ðA:2Þ

which, once substituted into Eqs. (42)–(44), yield

∇⋅A
0
α ¼ 0 in Vα; ðA:3Þ

and

0¼−∇a0α þ ∇2
A

0
α þ I in Vα; ðA:4Þ

with

A
0
α ¼ 0 at Aαs: ðA:5Þ

In addition, since porous media are assumed to be cyclic, we have
the following periodicity conditions:

A
0
αðr þ lkÞ ¼A

0
αðrÞ and a0αðr

þ lkÞ ¼ a0αðrÞ with k¼ 1;2;3: ðA:6Þ

To ensure uniqueness of solutions, we have the solvability

condition

〈a0α〉¼ 0: ðA:7Þ

The permeability tensor, Kα , can be calculated using the relation-
ship Kα ¼ 〈A0

α〉.

Appendix B. Simplifications of the closure problems:

two-pressure model

In this appendix, we present a methodology to determine the
effective parameters of the two-pressure model (Kn

ij, h and Πi) in
the case of the simplified mass exchange rate given by Eq. (122).
The continuity equations in Problems I and II become divergence
free and we remark that these closure problems are equivalent to
those derived in Whitaker (1986a, 1994) or Lasseux et al. (1996)
for the classical two-phase flow problem (with a slight difference
for the boundary conditions on Aβγ). Indeed, in their works they
use the general continuity of the normal stress tensor at the fluid–
fluid interface that can be expressed as

−nβγpβ þ nβγ ⋅μβð∇vβ þ ∇TvβÞ ¼−nβγpγ

þnβγ ⋅μγð∇vγ þ ∇TvγÞ þ 2sHnβγ on Aβγ ; ðB:1Þ

where nβγ is the normal unit vector pointing from β to γ; s is the
surface tension; and H is the curvature. In this paper, we have
considered continuity of pressure (see Eq. (8)) at the fluid–fluid
interface, so that conditions on the shear stress and surface
tension have disappeared.

B.1. Mapping onto 〈vβ〉
β and 〈vγ〉

γ

Problems I and II are analogous to those derived by Whitaker
(1994). They can be obtained by the following change of variables:

Aαβ ¼−Iδαβ−εβ½A
0
αβ ' K

−1
β −A

0
αγ ' ðK

−1
γ ' KγβÞ); α¼ β; γ; ðB:2Þ

aαβ ¼−εβ½a
0
αβ ' K

−1
β −a0αγ ' ðK

−1
γ ' KγβÞ); α¼ β; γ; ðB:3Þ

Aαγ ¼ −Iδαγ−εγ ½A
0
αγ ' K

−1
γ −A

0
αβ ' ðK

−1
β ' KβγÞ); α¼ β; γ; ðB:4Þ

and

aαγ ¼ −εγ ½a
0
αγ ' K

−1
γ −a0αβ ' ðK

−1
β ' KαγÞ); α¼ β; γ: ðB:5Þ

With similar considerations, one can show, following the devel-
opments of Lasseux et al. (1996), that Kn

γβ , K
n

βγ , K
n

γγ and K
n

ββ may be
evaluated by solving the two following problems:

Problem I’

0¼−∇a0iβ þ ∇2
A

0
iβ−δβiI in V i; i¼ β; γ; ðB:6Þ

∇ ' A0
iβ ¼ 0 in V i; i¼ β; γ; ðB:7Þ

with boundary conditions

A
0
iβ ¼ 0 at Ais; i¼ β; γ; ðB:8Þ

A
0
ββ ¼A

0
γβ at Aβγ ; ðB:9Þ

a0ββ ¼ a0γβ at Aβγ ; ðB:10Þ

periodic conditions

A
0
iβðr þ lkÞ ¼A

0
iβðrÞ; i¼ β; γ; k¼ 1;2;3; ðB:11Þ

a0iβðr þ lkÞ ¼ a0iβðrÞ; i¼ β; γ; k¼ 1;2;3; ðB:12Þ

and the relationship

〈A0
iβ〉¼−Kn

iβ; i¼ β; γ: ðB:13Þ



To ensure uniqueness of the solution, the following constraints
have to be satisfied:

〈a0iβ〉¼ 0 with i¼ β; γ: ðB:14Þ

Problem II’

0¼−∇a0iγ þ ∇2
A

0
iγ−δγiI in V i; i¼ β; γ; ðB:15Þ

∇ ' A0
iγ ¼ 0 in V i; i¼ β; γ; ðB:16Þ

with boundary conditions

A
0
iγ ¼ 0 at Ais; i¼ β; γ; ðB:17Þ

A
0
βγ ¼A

0
γγ at Aβγ ; ðB:18Þ

a0βγ ¼ a0γγ at Aβγ ; ðB:19Þ

periodic conditions

A
0
iγðr þ lkÞ ¼A

0
iγðrÞ; i¼ β; γ; k¼ 1;2;3; ðB:20Þ

a0iγðr þ lkÞ ¼ a0iγðrÞ; i¼ β; γ; k¼ 1;2;3; ðB:21Þ

and the relationship

〈A0
iγ〉¼−Kn

iγ ; i¼ β; γ: ðB:22Þ

To ensure uniqueness of the solution, the following constraint has
to be satisfied:

〈a0iγ〉¼ 0 with i¼ β; γ: ðB:23Þ

B.2. Mapping onto 〈pβ〉
β−〈pγ〉

γ

We now focus on the treatment of Problem III and the
evaluation of h and Πi. We propose the following change of
variables:

Bβ ¼ B0
βhþ B

1
β ' ðK

−1
β 'ΠβÞ þ B

2
β ' ðK

−1
γ 'ΠγÞ; ðB:24Þ

bβ þ 1¼ b0βhþ b
1
β ' ðK

−1
β 'ΠβÞ þ b

2
β ' ðK

−1
γ 'ΠγÞ; ðB:25Þ

Bγ ¼ B0
γ hþ B

1
γ ' ðK

−1
β 'ΠβÞ þ B

2
γ ' ðK

−1
γ 'ΠγÞ; ðB:26Þ

bγ ¼ b0γ hþ b
1
γ ' ðK

−1
β 'ΠβÞ þ b

2
γ ' ðK

−1
γ 'ΠγÞ: ðB:27Þ

The closure variables denoted with the superscript “0” correspond
to the effects of mass transfer on the deviations problem whereas
the ones that wear the superscripts “1” and “

2
” depict the presence

of integrals within the momentum equations. Moreover, in this
decomposition b0i are scalars, b1

i , b
2
i and B0

i are first order tensors
while B

1
i and B

2
i are second order tensors.

It turns out that ðb1
i ;B

1
i Þ and ðb

2
i ;B

2
i Þ satisfy Problems I′ and II′.

ðb0i ;B
0
i Þ can be evaluated through the following problem:

Problem III’

0¼−∇b0i þ ∇2B0
i in V i; i¼ β; γ; ðB:28Þ

∇ ' B0
β ¼ ε−1β in Vβ; ðB:29Þ

∇ ' B0
γ ¼ −ε−1γ in V γ ; ðB:30Þ

with the boundary conditions

B0
i ¼ 0 at Ais; i¼ β; γ; ðB:31Þ

B0
β ¼ B0

γ at Aβγ ; ðB:32Þ

b0β ¼ b0γ at Aβγ ; ðB:33Þ

and the periodic conditions

B0
i ðrþ lkÞ ¼ B0

i ðrÞ; b0i ðr þ lkÞ ¼ b0i ðrÞ; i¼ β; γ; k¼ 1;2;3: ðB:34Þ

Problems I′, II′ and III′ are linked through the zero average
constraints. Consequently, the above closure variables b0α , b

1
α and

b
2
α have to satisfy

1¼ 〈b0β〉
βhþ 〈b

1
β〉

β ' ðK−1
β 'ΠβÞ þ 〈b

2
β〉

β ' ðK−1
γ 'ΠγÞ; ðB:35Þ

0¼ 〈b0γ 〉
γhþ 〈b

1
γ 〉

γ ' ðK−1
β 'ΠβÞ þ 〈b

2
γ 〉

γ ' ðK−1
γ ' ΠγÞ: ðB:36Þ

To insure uniqueness of the pseudo two-phase flow solution, we
must constrain the pressure-like fields in one phase. We choose to
impose 〈b

1
β 〉

β ¼ 0, 〈b2
β 〉

β ¼ 0 and 〈b0γ 〉
γ ¼ 0. With such conditions, the

mass exchange rate h can be directly evaluated through the
calculation of the single Problem III’ and the following relation:

h¼
1

〈b0β〉
β
: ðB:37Þ

To obtain Π
n

i we use the equations (B.24) and (B.26) in the zero
average relation equation (104). This yields

0¼ 〈B0
β〉

βhþ 〈B1
β〉

β ' ðK−1
β 'ΠβÞ þ 〈B2

β〉
β ' ðK−1

γ 'ΠγÞ; ðB:38Þ

0¼ 〈B0
γ 〉

γhþ 〈B1
γ 〉

γ ' ðK−1
β 'ΠβÞ þ 〈B2

γ 〉
γ ' ðK−1

γ 'ΠγÞ: ðB:39Þ

Since B
1
i and B

2
i are solutions of Problems I′ and II′, we obtain

〈B1
β〉¼ −Kn

ββ; 〈B1
γ 〉¼−Kn

γβ; 〈B2
β〉¼−Kn

βγ ; 〈B1
γ 〉¼ −Kn

γγ : ðB:40Þ

According to this remark, Eqs. (B.38) and (B.39) become

Π
n

i ¼ h〈B0
i 〉; i¼ β; γ: ðB:41Þ
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