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ABSTRACT

Modeling the flow of fluids with shear-dependent viscosity through porous media is a challenging fundamental
and engineering problem. At continuum-scale, such flows are usually described using modified versions of Darcy’s
law, which are obtained by considering either an apparent viscosity or an apparent permeability. In the two cases,
Darcy’s law becomes nonlinear as the apparent viscosity or permeability both depend on the velocity or pressure
gradient. The main difference between these two approaches is the impact of non-Newtonian effects on the flow
direction. With the apparent viscosity, the flow direction is determined by the standard permeability tensor and
unaltered by non-Newtonian effects. On the other hand, with the apparent permeability, the flow direction may
be modified by non-Newtonian effects contained in the second-order tensor. Here, we ask the question of whether
it is necessary to use a general tensorial correction including changes of flow direction or if the (scalar) apparent
viscosity approach is sufficient. To study this, we solve numerically the non-Newtonian flow problem in a variety
of isotropic porous structures for a model fluid where the viscosity depends on the shear rate following a power
law with a Newtonian cut-off in the limit of low shear rates. We find that the structure of the porous medium
plays a fundamental role and that there is a competition between the nonlinearity of the flow, induced by the
non-Newtonian rheology, and the disorder of the porous structure. Our main result is that an apparent viscosity
is sufficient in cases of sufficiently disordered porous media, as is the case of some sandstones found in petroleum
engineering. Fundamentally, this suggests that the disorder in the geometry of the porous structure is mitigating
part of the nonlinear effects due to the rheology.

1. Introduction

Many aspects of the fundamental physics of non-Newtonian flows

with K, the intrinsic, or standard, permeability, (v) the average super-
ficial velocity, V{p)? the pressure gradient (where (p)” is the intrinsic
average pressure) and pg the gravity term. y,,,((v)) is the apparent vis-

through porous media, as found in practical applications ranging from
composites manufacturing [1] to blood flow in the vascular system
[2,3] or Enhanced Oil Recovery (EOR) [4], are still poorly understood.
Nonlinear effects, such as those associated with yield stress or Bingham
fluids [5], shear-dependent viscosity [6] or viscoelastic fluids [7], make
flow through porous media very complex and the development of con-
tinuum scale models challenging. In this work, we consider the flow of a
model shear-thinning fluid, belonging to the class of Bird—Carreau fluids
[6], that is Newtonian in the limit of low shear rates and shear-thinning
for larger values. The flow of such fluids through porous media is often
modelled by a modified Darcy’s law with an apparent viscosity [4,8-10],

___ K p_
(v)y = ) (V(p)! - pg), )

cosity that is used to capture the influence of non-Newtonian effects
and is often considered a function of the velocity, therefore yielding a
nonlinear form of Darcy’s law. If the fluid is Newtonian, the apparent
ViSCOSIty Happ simply reduces to a constant viscosity, ug, and the classic
Darcy’s law is recovered.

In the context of polymer solutions used in petroleum engineering,
the use of such an apparent viscosity dates back to the sixties, see for in-
stance [11] or [12]. To estimate this apparent viscosity, [9] latter intro-
duced the concept of an apparent shear rate that is used to calculate the
apparent viscosity directly from the expression of the shear-dependent
viscosity of the bulk fluid and the average velocity. Although ubiquitous
in engineering and useful in practical cases, the limitations of this ap-
proach, which is essentially based on analytical solutions in the case of
capillary tubes, are not evident. One of the main issues of the concept



of apparent viscosity is that it inherently assumes that non-Newtonian
effects do not affect the orientation of the flow. Indeed, we note in
Eq. (1) that the vectors (v) and K, - (V( Py — pg) are necessarily colinear.
There is no particular reason for this to be always correct. In fact, several
studies have even shown that the direction of (v) and K, - (V(p)ﬂ - pg)
may actually be different in the case of a non-Newtonian fluid flow [13-
15].

One way to circumvent this problem is to define a second-order ap-
parent permeability tensor, noted K,,,, and decompose it into a scalar
k, and a rotation matrix P. Within this framework, Eq. (1) is replaced
by

Ka
(v) = ——2 - (V(p) - pg). @
Ho

where u is an arbitrary reference viscosity (for instance the viscos-
ity in the limit of very low shear rates for polymer solutions) and
Kapp = kuP - Ko. This formulation is more general as it includes the case
of the apparent viscosity (P =1 and k, = py/u,y,) and can also capture
cases where the vectors (v) and K - (V(p)’ — pg) have different direc-
tions (P # I, anisotropy induced by the non-linear viscosity).

Our strategy in this work consists in using numerical simulations of
the flow of PLCO fluids at the pore scale over a broad range of porous
structures, as detailed in Section 2, to study the behavior of kP in
Section 3. More specifically, we wish to answer the following questions:
What are the values of k, and P in the different flow regimes? What is
the effect of disorder in the porous structure on k,P? Is it ever correct
to use only a scalar in Darcy’s law to represent the non-Newtonian ef-
fects? In addition to these fundamental questions, a discussion specific
to reservoir simulator models used for the flow of polymer solutions in
EOR (Enhanced Oil Recovery) is provided in Section 4.2.

2. Models and methods
2.1. The pore-scale flow model

In this section, we describe the flow model, limiting our study to the
steady, incompressible, single-phase, creeping flow of a liquid (g-phase)
through a rigid porous medium (c-phase). Momentum and mass balance
equations read

Vo [u@) (Vv +(V0)T)] = Vp+ pf = 0in V, ®3)

V.v=0inV, 4)

where pf is a volume force, v the velocity field and p the pressure field.
Here, the non-Newtonian rheology is captured by u(y), see Section 2.2,
with y the local shear rate, and is the only source of nonlinearity in the
problem. For the solid/liquid interface, we consider the simple no-slip
condition,

v=0at Ay, )

therefore neglecting specific effects, such as rearrangements of polymer
chains near the wall in the case of polymer solutions, that can often be
described using an effective slip boundary condition [16].

2.2. The rheology

Many complex fluids are shear-thinning/thickening and feature cut-
off effects depending on the local shear rate or local stress. This is the
case of polymer solutions, which have the ability to strongly modify
the rheological response of the bulk fluid, even at low concentrations.
Dilute or semi-dilute solutions of partially hydrolyzed polyacrylamides
(HPAM) and xanthan polymers, which are used in practical EOR situa-
tions [4], are known to be shear-thinning. Further, they often behave as
Newtonian fluids in the limit of very low shear rates and reach a shear-
thinning limit at very large shear rates. To represent these phenomena,
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Fig. 1. Evolution of the normalized shear viscosity (1/u,) as a function of the

normalized shear rate (y/y,) in log-log scale for the power-law with cutt-off
(PLCO), Bird-Carreau and cross fluids models.

several models are available, see Fig. 1. The most common model is
probably the Bird—Carreau [6].

In this study, we consider a model fluid with a power-law with cut-
off (PLCO) rheology,

Ho ify <7,
u(p) = 7\ ) (6)
Ho < o ) otherwise,

where j, is a critical shear rate and n is the parameter that controls
the non-linearity (n = 1 corresponds to the Newtonian rheology). The
focal feature of this law is that it captures both the Newtonian asymp-
tote at low shear rates and the power-law shear-thinning behavior at
high shear rates. The rationale for using this model is twofold. First,
this is one of the simplest models that captures these two effects, there-
fore allowing us to understand fundamental aspects of such flows with
a minimal number of parameters. More sophisticated models [6] may
slightly affect the transition regime but do not modify the main results
presented in this paper. Second, there are complex fluids, such as poly-
mer solutions, for which the PLCO remains a reasonable description,
especially for xanthan, a semi-rigid rod-like polymer [17]. For simplic-
ity, we use . = 1s7! and y; = 3.5cP (which is consistent with dilute
solutions of xanthan) in the remainder of the paper. Our results do not
depend on these specific values, which act only as scaling parameters.
Moreover, the proposed methodology is not limited to PLCO model. The
theory and implemented numerical models can be readily applied to
different rheological behaviors. For Bird-Carreau and Cross fluids, this
would essentially have a quantitative impact, without modifications of
the fundamental conclusions.

2.3. The macroscale flow model

One way to connect the pore-scale physics with the continuum mod-
els is to use upscaling procedures. These are generally used to derive
macroscale laws directly from the fundamental principles at the pore
scale. A variety of approaches exist (see discussions in [18]), including
the volume averaging method (VAM) or homogenization [19]. For in-
stance, Whitaker in [20] showed that for the creeping incompressible
flow of a Newtonian fluid with a no-slip condition at the solid/liquid
interface, the classical Darcy’s law is obtained [21],

=0 (v~ pg). @
Ho

One of the main results of the VAM is that the intrinsic permeability
Ko is a function of closure variables and can be calculated for a given
porous structure (see Appendix B for an introduction to the concept of



closure) independently from the viscosity. For linear flows, the link be-
tween the pore-scale physics and the continuum-scale models is now
well understood. However, the same is not true of non-Newtonian flows
that are described by non-linear partial differential equations, for which
upscaling is a lot more difficult and requires additional assumptions.
Appendix B illustrates the shortcomings of a procedure based on the
standard volume averaging method (see [20]) applied to a generic non-
Newtonian fluid. There are few very specific cases for which upscaling
approaches have been used, such as the case of a pure power-law rhe-
ological model (4 « 7"~1) [13,15] for which many theoretical analysis
and numerical studies have shown that the permeability is proportional
to [[{v)]I'=" [14,22]. These results are also largely validated by data col-
lected from coreflood experiments [9,23,24]. However, these studies are
limited to a pure power-law fluid, which fail to capture regime transi-
tions, and to simple unit-cell geometries.

Here, we postulate that the macroscale flow can be described by the
generalized Darcy’s law (see Appendix B),

Ka
vy =——2(V(p) - pg). ®)
Ho

To further account for changes in the flow direction between the New-
tonian and non-Newtonian regimes, we write

Kapp = KnP - Ko, ©)

with the scalar, k,, capturing a change in the velocity norm due to non-
Newtonian effects and the rotation tensor P capturing changes in the
direction of the average velocity [13-15]. The rotation tensor P may be
written as

1 0 0 cos(a) —sin(a) O
P=]0 cos(y) —sin(y)]|-]| sin(a) cos(a) 0], 10)
0 sin(y) cos(y) 0 0 1

with a and y the rotation angles. We note that:

1. if the nonlinearity does not affect the average velocity direction, then
P=1;

2. in a general nonlinear case, both k, and P are a priori functions of
(v)(module and orientation);

3. and while in the linear case the permeability tensor K, is symmetric,

the same is not true of K, because of nonlinear effects [25].

The macroscopic model is therefore
K
(V) = =kyP- 22 - (V) = pg) = kP - (o) (1
0

with (v,) the average velocity associated with the linear flow regime at
the same value of V(p)? — pg. When the fluid is Newtonian, the velocity
resulting from the source term V(p)? — pg is called hereafter the Newto-
nian average velocity and is noted (v,). When the fluid is non-Newtonian,
the velocity resulting from the same source term V(p)? — pg is called the
non-Newtonian average velocity and is noted (v).

2.4. The porous structures

To understand the role of k,P in Eq. (11), we are going to solve
numerically the flow problem at the pore scale over a variety of porous
structures. All these structures are treated as locally periodic, so that
effective properties K, k, and P can be easily calculated by pore-scale
simulations with periodic conditions applied to v and p (the reader is
referred to [26] for a discussion on how to apply periodic conditions to
tomographic images of intrinsically non-periodic media such as natural
porous rocks).

The array of cylinders

The first class of porous structures that we consider are 2D arrays of
15x15 cylinders, denoted as A-type (A standing for array), correspond-
ing to an area of 15x 15mm?. Our goal in studying these model porous
media is to assess the impact of disorder on the apparent permeability.

These structures are created by first positioning the cylinders on a reg-
ular grid (medium A°=0, see Fig. 2a) and then disturbing their position.
To do so, we randomly select one cylinder and displace it with a uni-
form probability for the direction and a centered Gaussian law for the
amplitude with the constraints that 1) periodic boundaries must be pre-
served and 2) overlapping is prohibited. The amplitude of the displace-
ment is characterized by the standard deviation ¢ of the Gaussian law,
which is used as a proxy to measure disorder [27]. Then, the procedure
is repeated for another cylinder randomly selected among the remain-
ing ones until all cylinders have been displaced. This method generates
slight biases in the distribution of the cylinder displacements, which is
not truly Gaussian because of the constraints described above. For each
value of o, 10 porous media are generated and are denoted by Af#o.
Examples of geometries with various degrees of disorder are presented
in Fig. 2a—e.

The Bentheimer sandstone

The second class of porous structure that we consider is a Bentheimer
sandstone, namely B (of volume 1 mm?), represented in Fig. 2f. This
medium is similar to sandstones encountered in EOR applications [28].
The geometry of this medium was extracted from x-ray micro tomog-
raphy (see discussions about the related problems of the procedure in

[29]).
2.5. Setting of numerical simulations

The pore-scale flow problem is solved using the finite volume tool-
box OpenFOAM [30] via a SIMPLE algorithm (see e.g. Patankar [31]).
Mesh convergence is studied for unstructured hex-dominant meshes that
are generated for each medium. For the two-dimensional structures, we
could afford to use uniform meshes. However, for the three-dimensional
sandstone, we achieved grid convergence by performing local mesh re-
finements within the pore throats. These pore throats are defined by the
distance to the wall (using the tool close-proximity feature detection in
OpenFOAM). We apply periodic boundary conditions on v and p. For
A-type media, this condition is straightforward since these media are
spatially periodic by construction. For medium B, this condition is en-
sured by surrounding the medium with a very thin layer of liquid (of
thickness 0.5 ym) on all sides [32]. This layer was generated as thin as
possible in order to avoid preferential flows of fluid around the medium.

To study k,, and P under various flow conditions, we impose a source
term pf in the momentum equation to generate the flow, which plays
the role of —(V(p)” — pg) in Darcy’s law (Eq. (11)). The direction of the
source term is specified with radial coordinates as

cos(8)
pf = plIfllf sin(®) |- (12)
0

In all the cases presented in this work, the source term is imposed in the
plane (e,, ey). Fig. 3 illustrates in two dimensions the source vector pf
and the associated Newtonian, (v,), and non-Newtonian, (v), average
velocities. In two dimensions, only the angle « is needed in the rotation
matrix P (see Eq. (10)).

2.6. Metrics and statistics

To investigate the macroscale behavior with various degrees of disor-
der, the dimensionless intrinsic permeability K is defined for the A-type
media as

K = KKg—iO” (13)

with ngo the permeability of medium A°=0. Following the same idea,
the parameter k? is defined as

= K 14
kn - ko=0" (14)
n
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Fig. 2. Porous structures investigated in this study. (a)-(e): velocity fields of a Newtonian flow imposed in the array of cylinders (denoted A-type, area of 15 x 15 mm?)
with various degrees of disorder and a source term pf imposed with 8 = 22.5° (see Eq. (12)). (f): solid phase of the Bentheimer sandstone B (of volume 1 mm3).

To further investigate the statistics of the results, we define the expected
value E(y) for each macroscale variable y as the average of y over the
10 realizations corresponding to each value of ¢. The standard deviation,

(v) sw) = \/E(w?) - Ew)”, as)

is also calculated for each value of ¢. Using the A-type media, we in-

<V0> vestigate the macroscale behavior in the linear case (via the parameter

IK5ID and in the nonlinear case (via the parameters k,, « and y, see

(8% ‘ Eq. (9)) as a function of the disorder.

f For several Figures of this paper (4, 5 and 7), the same statistical

p ‘ representation is used for the A-type media. For a macroscale variable

9 e v, the average E(y) is represented by (red) disks. The standard deviation

X ‘ 3(y) is represented by error bars (the lower and higher tips of the bars

represent respectively E(y) — Z(y) and E(y) + Z(y)). Finally, the (blue)
Fig. 3. Angles used in a 2D case. circles represent the minimum and maximum values of .
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Fig. 4. Statistics of the anisotropy factor f for the A-type media. (a) evolution with the disorder, characterized by ¢ and (b) evolution with the porous medium size

for 6 =0.20 (5x5, 10x10 and 15 x 15 cylinders).

2.7. Statistical isotropy of A-type media

To ensure that the process used to generate the A-type media is cor-
rect, we check here that the disordered media are isotropic. To esti-
mate the degree of anisotropy, we calculate the so-called permeability
anisotropy factor f with the two eigenvalues d,, and d, of Ky,

f= XX
dyy

(16)

For each realization and each value of ¢, we therefore calculate the full
intrinsic permeability tensor K, and then the anisotropy factor f, see
Eq. (16).

Fig. 4a shows that, as the disorder increases, the average value of the
anisotropy factor E(f) remains close to unity. The minimum and maxi-
mum values of f are also close to unity (the largest deviation is observed
for 6 = 0.3 where the minimum and maximum values of f are respec-
tively close to 0.70 and 1.30). Despite the fact that each realization is
not isotropic, Fig. 4a allows us to consider the ensemble as statistically
isotropic since the expected value of f for only 10 realizations is very
close to 1.

We also observe in Fig. 4a that, for a given size of the domain, Z(f)
increases with . We hypothesize that this is due to the finite size of the
considered domain, which may not be large enough to ensure isotropy
and statistical convergence when ¢ is large. For instance, we clearly see
in Figs. 2a to 2e that increasing o leads to structures with character-
istic lengthscales (aggregates of cylinders and preferential flow paths)
much larger than the cylinder diameter. Further, given the procedure
for generating these disordered structures and the periodic conditions,
we expect some form of ergodicity between ensemble and spatial av-
erages. Fig. 4b, which shows that the variance of ensemble averaging
strongly decreases with the size of the domain, confirms this ergodic-
ity. Ergodicity is also proven using a domain of size 50 x 50 cylinders,
see Appendix A. For a domain size of 15x 15, which is the size used
in the remainder of the paper, we can consider only 10 realizations to
obtain statistically converged results for f. Following the same idea, we
verified that the results were statistically converged for the nonlinear
parameters k, and P, even though the results are not presented.

3. Results

To better understand how nonlinear effects develop and how they
affect the macroscale transport properties, this section starts with a de-
scription of the Newtonian case, then moves on to study the transition
regime and finally describes the fully non-Newtonian regime. In partic-
ular, we will see that this allows us to characterize the non-Newtonian
regime and clearly define the domains of validity of our interpretations.

Table 1

Characteristics (porosity, permeability and anisotropy factor)
of the porous media investigated. The permeability K is ex-
pressed in um?. The anisotropy factor f is defined in Eq. (16).

Medium ¢ Ko f
1828 0
A0 0.4973 1
( 0 ]828)
1817 57
A0=005 . .
; 0.4973 ( 57 1812) 0.94
1743 70
0=0.1
AS 0.4950 ( 2 1827) 1.09
Ac=02 0.4950 1672 151 0.83
! 151 1671
1626 37
A0=03 . .
: 0.4950 ( hs 1380) 0.84
3.85 0.14 0.23
B 0.25 0.14 4.32 0.22 0.91
0.23 0.22 4.30

3.1. Newtonian flows

We first focus on the Newtonian behavior of the different porous
structures presented in Fig. 2. To evaluate differences between these
structures, we characterize all media by their porosity ¢, their intrinsic
permeability K, and their anisotropy factor f (see Eq. (16)). Example
results are described in Table 1. The calculated values of K, for medium
A°=0 which has been intensively investigated in porous media sciences
[14,15], is in good agreement with the literature. Further, the value of
the permeability for medium B is also correct for a typical sandstone
[33,34]. Regarding isotropy, we find that the media A are statistically
isotropic (see Fig. 4a) and that B is approximately isotropic.

For disordered structures, A°#°, Fig. 5 shows the statistical behav-
ior of | Kg|| with the disorder, as characterized by ¢. We observe that

“(J

0
that the size of the considered domain may not be large enough to be
considered as a representative elementary volume (REV). We also see

that E (| K(’;
that the tortuosity increases with the disorder (see Figs. 2a to 2e).

) increases with o. As discussed above, this is related to the fact

> decreases with ¢, which we hypothesize is due to the fact

3.2. Transition from Newtonian to non-Newtonian flows

We now investigate the behavior of k,P during the transition from
a constant to a power-law viscosity. For Newtonian flow at relatively
slow velocities, we have that k,P = I. For larger values of the velocity,
nonlinear effects start to become predominant at the pore scale, leading
to changes in k,P. To capture this transition, we use the dimensionless
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velocity

B (1

e/ [IKoll

with ||Ko|| the maximum of the eigenvalues of K, in Eq. (17). Here, the
critical velocity for transition from Newtonian to non-Newtonian regime

is 7.1/ ||Ko|-

Fig. 6a shows the evolution of k, with U™*. As already highlighted in
[29,35], the transition occurs for U'* ~ 1 and all curves tend to collapse
to a single one. The expression for the critical velocity is also linear in
7.. Therefore, we see that y, only acts as a scaling parameters for the
transition and that results are independent from the exact value of 7.
For U™ > 1, we find that &k, « (U*)'™ so that the permeability follows
a power-law that is identical to that of the bulk rheology of the fluid.
This results was already derived theoretically [15,36] and observed ex-
perimentally [37-39] or numerically [13,14,35].

For A-type media with ¢ <0.10 and medium B, the transition oc-
curs for values of U™ very close to one. This means that for these sta-

an

tistically isotropic media, the use of 4/||Ky|| as a characteristic length
in Eq. (17) provides a way to evaluate the order of magnitude of the
critical average velocity associated with the transition. For highly dis-
ordered structures, A‘l’:O'20 and A(}::O.ao, 1/|IKo|| does not seem to be as
accurate in predicting the transition (see magnification near the tran-
sition in Fig. 6a). We hypothesize that this is due to the anisotropy of
individual realizations (see f in Table 1). ||K,|| is indeed calculated as
the maximum eigenvalue of the permeability tensor, so that /||K|| is
associated with the flow in the preferential direction (defined by the
eigenvector associated to the eigenvalue ||Ko||). In Fig. 6a, the flow is

imposed at 6 = 22.5°, which is not the preferential direction of media

A‘1’=0'20 and A‘1’=0'3O, so that there is no reason for 1/||Ko| to describe
accurately the transition for this flow direction.
For anisotropic media, it may therefore be interesting to use a length

lIKoll-
For instance, we could diagonalize K to obtain the three eigenvalues
and the principal axis eigenvectors. If the flow is oriented along a prin-
cipal axis, we may use the square root of the associated eigenvalue as
characteristic length. We could also combine the eigenvalues to calcu-
late the lengthscale for any flow direction, which is actually what is
done in reservoir simulators (see Eq. 2.83 in [40]). This new definition
of U™* demands further investigations that are beyond the scope of this
paper.

We then go on to study the evolution of the angles of P with U™,
an aspect of the problem that was not studied in [35,41]. For the two-
dimensional A-type media, only the angle « varies with U* (y = 0° in
Eq. (10)). For medium B, only the angle « is plotted, since the angle y
exhibits a similar behavior. For U"* <« 1, we observe a = 0° for all me-
dia, yielding an apparent Newtonian behavior (P = I). For U™* > 1, we
observe an anisotropy effect induced by the nonlinearity (P # I), with a
plateau reached for a fully developed non-Newtonian regime, U™ > 1.
For U* > 1, 7 is higher than y_ everywhere in the liquid phase, so that
the fluid behaves as a pure power-law fluid and P becomes independent
from ||(v)||. The independence of P from ||(v)|| is consistent with theoret-
ical studies that deal with pure power-law fluids [13-15]. For medium
B, a and y are sensitive to U'* and their evolution is not monotonous.

that is a function of the flow orientation and that differs from

3.3. Effect of disorder on the non-Newtonian flows

We now focus on fully developed non-Newtonian flows (U™* > 1)
and investigate the effect of the disorder on the macroscale parameters.
We study statistically isotropic media (A-type and B) in order to capture
the effect of the disorder alone. For the ordered structure, A°=0, it is well
known [13,15] that there is a significant change in the flow direction
compared to the Newtonian regime, ie., e, = Y pecomes different

[I89]]
= ”E:U;” . For this ordered medium, the use of a scalar correction
0

alone in Darcy’s law (Eq. (1)) is not appropriate and only a tensorial
approach (Eq. 8) is accurate. However, it is unclear how disorder affects
these results.

Fig. 7 shows the evolution of £ (see Eq. (14)) and « (see Eq. (10))
with increasing disorder. For medium A°=0, the standard deviation is
zero, k* = 1 and E(a) is about —4.5°. For A°#©, we observe in Fig. 7a that
E (k;) increases with the disorder. We also show in Fig. 7b that E(«) is
getting close to 0° as ¢ increases. This means that as disorder increases,
the direction of the non-Newtonian average velocity is statistically

from %
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Fig. 6. Evolution of (a) k, and (b) the angle a of P plotted against the average dimensionless velocity U™* = |[(v)||/ (d)j/c ||K0||) for several porous media. The source
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The source term direction is fixed (8 = 22.5°).

getting closer to the direction of the Newtonian average velocity (e, =~
€0). In the case of the highly disordered sandstone medium B, Fig. 6b
shows that, for U"* > 1, the angle « is smaller than 0.2° (for the angle
v, the order of magnitude is the same). In the case of this sandstone, it
therefore seems reasonable to consider that e, ~ 2. These two results
show that the effect of increasing disorder in the porous structure seems
to align e, and eg, leading to P ~ I and eliminating the rotation due to
the nonlinear effects. This is the main result of this paper.

To go one step further, we now investigate the influence of the pa-
rameter n, which drives the nonlinearity in the PLCO rheological model.
Fig. 8a shows the evolution of a with n for several A-type media. For a
fixed value of o, the average velocity deviation increases as the non-
linearity is getting stronger, i.e., |a| increases with n. For a fixed value
of |n — 1|, the average velocity deviation decreases as the disorder in-
creases, Le., |a| decreases with o. Further, the observation that E(«) gets
closer to 0° as ¢ increases is confirmed by Fig. 8a as |a| is always largest
for the ordered medium. Finally, in the case of medium B, we show in
Fig 8b that the angles a« and y remain relatively small even for large
n. Here, we clearly recognize a competition between the disorder of the
porous structure and the nonlinearity of the rheology. The disorder tends
to weaken the influence of the rheology on the average flow orientation.

The previous results are presented for a fixed direction of the source
term. Fig. 9 shows the evolution of k, and the angles a and y with the
source term direction, characterized by 6 (see Eq. 12), for U'* > 1 and
several porous structures. Fig. 9a and b show a 90° periodic and 45° anti-
periodic behavior of k, and « for the ordered medium A°=C. This kind
of periodic behavior has already been observed for similar 2D ordered
arrays [13,15]. As expected, when the source term is imposed along a

preferential direction (0 = m45° with m € N), the Newtonian and non-
Newtonian average velocity directions are the same (e, = eg) for A°=0,
Fig. 9 indicates that the effect of disorder also depends on the flow
orientation. While the ordered medium A°=C exhibits a periodic behav-
ior, this feature is weakened as the disorder increases and the magnitude
of the variations of a with the source term direction decreases. The same
observation is true for k;, in Fig. 9a. Concerning the disordered medium
B, a noisy trend is observed for k, with . The magnitude of the vari-
ations of k, is also very small (the maximum reaches 1.3%) compared
to the A-type media (for A°=, the maximum reaches 11%). These ob-
servations suggest that when disorder is large enough, the sensitivity of
the apparent permeability with the flow direction may be neglected.

4. Discussion
4.1. Disorder mitigates nonlinear effects

We have shown in Section 3.3 that there is a competition between
the disorder of the porous structure and the nonlinearity induced by
the rheology. This result is consistent with previous works in [35,42],
showing that non-Newtonian effects may have little impact on the dis-
tribution of the velocity field for disordered structures. Here, using a
model two-dimensional system with controlled disorder, we have ex-
tended these results to flow orientation by showing that disorder tends
to limit the impact of the nonlinear rheology on the flow orientation
and that the deviation angle tends to zero as disorder increases.

To gain additional physical insight into the flow direction problem,
let us use a simple thought experiment. Consider a system consisting of a
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succession of pore bodies and pore throats. Each pore throat yields a de-
viation between the non-Newtonian and Newtonian flow. For instance,
for A°=0, the deviation for each unit-cell is a = —4.5° between e, and
€. For the full domain consisting of 15 x 15 unit-cells with a perfectly
ordered structure, the deviation is the same, E(a) = —4.5°, see Fig. 7b.
In this case, the effect of the rheology dominates over the disorder of
the porous structure (which is zero for A°=0), so that the deviation is
relatively strong. However, in the case of disordered media, each pore
throat tends to deviate the flow in a random direction so that, in av-
erage, the effects compensate and the deviation is small. In an infinite
isotropic domain, we expect that e, would tend towards e® with increas-
ing 0. Considering finite-size domains (15x 15 cylinders), we observe
that using ten realizations is enough to obtain E(«) ~0° for the highly
disordered media A°=%-3, This suggests a form of ergodicity, i.e., similar
behavior when averaging over space in large domains or averaging over
a high number of small size realizations (see discussion in Appendix A).

For the realistic medium B, the disorder is sufficiently large to dom-
inate over the nonlinearity, yielding small deviations of the velocity di-
rection, i.e. e, ~ 2. This suggests that models based on a scalar viscosity
in Darcy’s law may be accurate to account for the non-Newtonian effects
in Bentheimer sandstones; although further investigations are necessary
to: (1) to ensure that the angles of P remain small as the sample size
increases (say 125mm?3) and (2) to evaluate the uncertainty and sensi-
tivity of simulator results associated with angles of the rotation matrix
P that are about 1°.

4.2. Models used in EOR engineering

The model with the apparent viscosity is the one that is used in
petroleum engineering for polymer solutions (see [40]). In these sim-

ulators, the flow is treated using an apparent viscosity in Darcy’s law
(see Eq. (1)),

Happ (Teq) = #(7eq) Rics (18)

where Ry is the permeability reduction factor (not necessarily constant)
and y is the rheological law of the bulk fluid. The idea here is that the
bulk fluid rheology can be used to describe the macroscale flows by in-
troducing an equivalent shear rate, ., which unlike the local shear rate,
7, is a macroscale field. This equivalent shear rate is usually calculated
as in [9] for polymer solutions

Al

eq = %pm PR’
eq

19)

with ¢ the porosity and ap, an empirical parameter that characterizes
the impact of the porous structure and may depend on various surround-
ing parameters [24,39]. In Eq. (19), the norm of the average velocity is
the L2-norm. The equivalent radius Req is defined as

8k
R =15 (20)

in the case of an isotropic medium. In the anisotropic case, a different
formulation involving ||K0_1/ z. (v)|| is used in reservoir simulators [40].
If the medium is not isotropic, we simply use in this paper ||K,|| instead
of k to calculate Ry, where the norm is defined as the maximum of the
eigenvalues of K,. The definitions of both ., and the equivalent radius
R.q, sometimes called the “pore throat radius”, result from an analogy
with the flow through a capillary tube [43].

This heuristic formulation is complex and primarily empirical. For
instance, the parameter R takes into account the retention mechanisms



associated to the flow of polymers [40]. In practical coreflood experi-
ments, R, depends upon a variety of parameters, such as the salinity,
concentration of polymers or even 7., [44]. The dependence of Ry upon
these parameters and the fundamental physics are not well understood.
Further, Eq. (18) assumes that the trends of Happ and yu are the same.
Even if Yeq MAy be calibrated via the parameter Apm in Eq. (19), there
is a priori no reason for the apparent and bulk fluid viscosities to be
identical. In fact, in the case of PLCO fluids, this is clearly not the case.
Finally, this formulation is purely scalar and therefore is based on
the assumption that the average flow direction is not modified by non-
linear effects. As discussed above, the sensitivity of reservoir simulators
to small perturbations in the flow direction, especially when combined
with other sources of uncertainty, should be carefully assessed. Also, in
oil fields, stratifications [4] or large-scale heterogenities in the geologi-
cal structure may affect this result, so that in practical situations, strong
anisotropies at different scales may further complicate the matter.

5. Conclusions

In this work, we have investigated the flow of a model fluid with
shear-dependent viscosity through porous media. In particular, we have
studied the influence of the non-Newtonian effects and of the disorder
of the porous structure on the apparent permeability tensor. To do so,
the flow problem was solved in a variety of porous structures in order
to study the behavior of the apparent permeability, which was written
as Ky, = kyP - Ko with K, the intrinsic permeability tensor, P a rotation
matrix (defined by 2 angles) and a scalar k,. We found that there is a
competition between the disorder of the porous structure and the non-
linearity associated to the non-Newtonian rheology. While the nonlin-
earity tends to deviate the velocity direction from the Newtonian direc-
tion, disorder tends to weaken this effect. If the impact of the porous
structure dominates over the nonlinearity, which seems to be the case
for sandstones, a scalar correction to Darcy’s law (see Eq. (18)) is suffi-
cient. This seems to indicate that an apparent viscosity may be adapted
to reservoir simulators, although further investigations are required to
rigorously assess the impact of large-scale anisotropies in geological for-
mations and the exact degree of uncertainty generated by such effects.
An important extension of this work is to consider a time-dependent
rheology and unsteady effects induced by flexible polymer molecules
[45], such as elastic turbulence. Further, mass transport effects, reten-
tion [10] or inaccessible pore volume [46] may also significantly impact
the flow orientation. From a fundamental perspective, it would also be
interesting to investigate if the competition between nonlinear effects in
the flow and disorder in the structure is a more general result applying
to other classes of nonlinearities, such as inertial flow.
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Appendix A. Ergodicity

In Section 2.7, we have shown that considering ten A-type media
of size 15x 15 cylinders was enough to obtain statistical convergence.
We indeed observe a form of ergodicity between ensemble and spatial
averages in Fig 4b, ie., the variance of ensemble averaging strongly de-
creases with the size of the domain. To further enforce this idea, we
performed simulations on a A-type medium of size 50 x50 cylinders
with ¢ = 0. 30 (expensive calculations with about 90 million mesh ele-
ments). The size of 50 x 50 was chosen because its area is approximately
equivalent to 10 times the area of 15x 15 cylinders. For this large sys-
tem, we found an anisotropy factor f = 0. 97 (see Eq. (16)). This value
is very close to unity, showing that the procedure used to generate the
A-type media is indeed isotropic. Further, following the framework of

Section 3.3, we also simulated a fully developed non-Newtonian flow
with a source term imposed with 6 = 22.5°. The resulting angle a be-
tween the vectors e, and € is about —0.1°. This small value is very
close to the average value of a over the 10 A-type media at ¢ = 0.30
(see Fig. 7b) which is about 0.06°. This proves that the results are also
statistically converged for the nonlinear macroscale parameters.

Appendix B. Volume averaging method

In this appendix, we describe the major steps of an upscaling pro-
cedure using the volume averaging method (VAM) applied to a non-
Newtonian fluid for which the viscosity behavior is defined in a generic
manner. Following the methodology proposed by Whitaker in [20], we
show that the nonlinear problem cannot be closed in the classical man-
ner for the Stokes linear problem. The analysis instead leads to a general
non-linear relationship between filtration velocity and the gradient of
the intrinsic pressure.

Pore-scale model

We first describe the pore-scale flow model. The flow of the liquid
(B-phase) through the rigid porous medium (s-phase) is steady, incom-
pressible and single-phase. Momentum and mass balance equations de-
scribing the flow read as follows,

V- [ (Vv +(VV)T)| = Vp+pg = 0in ¥}, @21

V.v=0inV,. (22)

The micro-scale description contains a rheological model, expressed
with a generic expression for the viscosity, 2, which is a function of
the local shear rate y. Hence, we define,

H(F) = Ho A7) in Vi, (23)

with o the Newtonian viscosity of the fluid. For the solid/liquid inter-
face, core-flood experiments show that the Newtonian flow of polymer
fluids through porous media often exhibits a permeability higher than
expected. This phenomenon has been attributed to complex mechanisms
between the polymer molecules and the wall, yielding an apparent slip
effect [43]. Studies show that an effective slip boundary condition could
describe at the pore-scale the mechanism occurring at the molecular
scale [16]. Here, we will not take into account this kind of interaction
and a simple no-slip condition is applied at the solid/liquid interface,

v=0at Ag,. 24)
The framework

We consider a locally periodic porous medium. The average of a
variable y at location x is defined as

W)lx = /W m(x = y)xs(Yw(y)dy, (25)

where v is either p or v; y; is the fluid-phase indicator (whose value is 1
in Vg and 0 elsewhere); and m is a normalized kernel, i.e., /R3 m(y)dy =
1. The relationship between intrinsic and superficial averages is (y) =
&P, where ¢ = V/V is the porosity. Since the domain is spatially
periodic, the porosity is uniform and V¢ = 0.

The goal of the averaging operator is to act as a low-pass filter, yield-
ing a well-behaved macroscale behavior. Several choices for the kernel
m are available and are discussed in a series of paper from Quintard and
Whitaker [27,47-50] and more recently by Davit and Quintard in [51].
In the theoretical development that follows, we assume that the kernel
is correctly defined. We also decompose the flow variables as the sum
of an intrinsic average and a deviation [52],

vx) = )| +o). (26)



Fig. B1. Schematic of length-scale separation (l; <h<L). The solid phase ¢ is represented in gray.

The quantity V(y)? reflects the variations of y at a large scale whereas
Vi rather reflects micro-scale variations. The length [; characterizes the
micro-scale structures whereas L is associated to the macroscale domain.
We assume that these length-scales are separated, i.e.,

ly<h<L, @7
where h is the unit-cell size. Fig. B1 illustrates the length scale separa-
tion.

Averaging

We first average the mass balance equation at location x. This yields

(v- v)f’) =0. 28)
We then average the momentum transport equation (Eq. (21)) as

(V- (@) (Vv + 0] = VB)| = V(o) - pe, 29)
Using the spatial averaging theorem [53] along with the no-slip condi-
tion at Aﬂ<7 (Eq. (24)), Eq. (28) is equivalent to

Vo] = ve (v (30)
Since we assumed that the porous medium is spatially periodic, the
macroscale porosity gradient is zero. This yields

V~(v)ﬂ| =0. 31
Introducing the decomposition (Eq. (26)) and the original mass balance
equation in Eq. (31) leads to

V-¥(x)=0in V. (32)

in which we have used the separation of scale assumption to discard
gradients of (v)? (the macro-scale velocity field is approximately con-
stant over the REV). More generally, the local problem over a REV is
characterized by the following approximation

VWY %05 V(V{(p)® - pg) ~ 0. (33)

We also inject the decomposition into the boundary condition, which
yields

(v>ﬂ|x = —¥(x) at Ay, (34)

The original pore-scale momentum equation can be re-written as
V- [u) (VY + (V0T = Vi = (V(p)’ = pg) =0 (33)

to complete the governing equations for the velocity and pressure devi-
ations.
Finally, we average the perturbation decomposition to obtain (see

[51D

®’| =0 (36)
and
<v>”|x =0. 37

The closure problems

In this section we analyze the solution of the coupled problems in-
volving averages and deviations (the so-called closure).

The linear case

The micro-scale equations that we must solve are the continuity
equation (Eq. (32)) and the momentum equation (Eq. (29)) coupled to
the macro-scale equations for the averaged velocity and pressure field.
For the linear case, p and v may be obtained under the following form
[20],

P00 = (p)| +sobox) - (v’ . (38)
————
p(x)
v = (W] +By- (] . (39)
————

V(x)

in which B, and b, are closure (or mapping) variables. The problem
expressed with the variables B, and by now reads [20]

ABy — Vby = (ABy — Vhy)” in ¥, (40)
V-By=0inV,, 4D
Bo = —Tat A, 42)
(by)? =0, 43)



Periodicity of B, and byatAg,. (44)

with the field B, having the following property

(By) =0, “5)
Then, we inject B, and b, into Eq. (29) to obtain

=(V(n) = pg) + Ho(ABo = Vby)’ - (v} =0, (46)

and the permeability in the classical Darcy’s law reads

K = _émo ~ Vby)’. 7

Each column of the permeability tensor K, corresponds to the Newtonian
flow in response to a source term that corresponds to each unit vector of
the standard basis. In this specific linear case, a solution for any vector
(v) can be built by solving the three problems for By, - e; and by - e; with
i=1,2,3.

The nonlinear case

The resolution methodology presented above relies on the superposi-
tion principle for the construction of the solution. In the nonlinear case,
one has to solve the problem for j and v (or V) (i.e., Egs. (32), (34)-(36))
locally over a representative volume for a given value of (V(p)ﬁ - pg),
which is constant over this volume thanks to the separation of scales.
The resulting field can be used in the averaged momentum equation to
obtain a macro-scale momentum equation under the form of a non-linear
relationship between (V(p)? — pg) and (v) such as

(v) = —Kyen - (V(p) = pg)

where K, is homogeneous to kg~'m?s and depends on the average ve-
locity, the rheology and the structure of the porous medium. This generic
form of the macro-scale momentum equation can be put under the form
of a modified Darcy’s law as

(48)

(V) = kP 2 (V)P = pe). (49)
Ho

This formulation, according to the above development, handles the re-
lationship between (v) and the source term V{(p)’ — pg with only 3 in-
dependent non-linear variables (functions of (v)?, i.e., module and ori-
entation): a scalar k,, and the angles ¢ and y used in the rotation matrix
P. The apparent permeability tensor in Eq. (2) is therefore written as,

Kapp(<v)) = knP : KO' (50)
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