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a b s t r a c t 

Heat transfers in dilute gas-particle mixtures are often modeled using hybrid Euler–Lagrange descrip- 

tions, treating the carrier fluid via an Eulerian representation and following each particle in a Lagrangian

framework. One of the focal issues in these models is the calculation of the macro-scale heat transfer

between the continuous phase and particles. In the standard approach, the heat transfer for each particle

is considered to vary linearly with the average temperature difference between the particle and the fluid.

Here, we use the method of volume averaging with closure to filter the heat transfer equations at the

micro-scale and derive a closed form of the heat transfer rate, which is significantly different from the

standard case. The primary difference is that the heat transfer for a given particle does not only depend

on the temperature of the particle but also depends on the temperatures of all other particles within

the averaging volume. This yields a matrix of heat exchange coefficients that captures indirect particle–

particle exchanges at macro-scale. Using simple model cases, we validate our approach, compare it to the

standard heat transfer model and show that it degenerates toward the standard model only in specific

cases.
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1. Introduction

We are interested in dust explosion hazard in the context of

nuclear safety and, in particular, in modeling flame propagation

for dilute and dispersed gas-particle flows with particle sizes typ-

ically ranging from 10 −6 to 10 −4 m and a volume fraction of par-

ticles up to 10 −3 . Such configurations correspond to accident sce-

narios that may happen during operations of decommissioning of

uranium natural graphite gas reactors ( D’Amico et al., 2016 ) that

involve graphite particles or loss of vacuum accident in the vessel

of fusion reactors ( Denkevits and Dorofeev, 20 05; Janeschitz, 20 01 )

that involve either tungsten or beryllium particles. In this context,

an important modeling issue is to identify the mechanisms that in-

fluence the severity of the explosion and may result in the release

of radioactive or toxic materials. 

Our global strategy follows the ones proposed in e.g.,

Cannevière (2003) and Neophytou and Mastorakos (2009) for

liquid fuel droplets or in Cloney et al. (2018) and Park and

Park (2016) for coal particles. The idea is to use detailed numer-
∗ Corresponding author.
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cal simulations to analyze the flame structure and calculate the

aminar burning velocity that is then used in a second step to de-

ermine the turbulent flame velocity (see for instance Proust, 2017;

ilvestrini et al., 2008 ). Detailed numerical simulations are often

omputed via a hybrid Euler–Lagrange description, which uses a

ltered Eulerian representation of the fluid phase and a Lagrangian

racking of the particles ( Boivin et al., 20 0 0; Capecelatro and Des-

ardins, 2013; Crowe et al., 2011; Simonin et al., 1993 ). In this con-

ext, the macro-scale energy balance equations are written classi-

ally as 

 t 

(
αβ(ρc p ) β〈 T β〉 β)

+ ∇ ·
(
αβ(ρc p ) β〈 T β〉 β〈 u β〉 β)

= ∇ ·
(
αβλ∗

β∇〈 T β〉 β)
− 1 

V 

N V ∑ 

p=1

Q βp (1)

(mc p ) p 
dT p 

dt 
= Q βp (2)

The first equation corresponds to the heat transfer equation

or the filtered temperature 〈 T β〉 β of the continuous β-phase,

here λ∗
β
, 〈 u β〉 β , ( ρc p ) β and αβ are respectively an effective

hermal conductivity, the intrinsic velocity, the volumetric heat



c  

E  

t  

a  

t

Q

w  

u

 

E  

(  

 

u  

i  

t  

s  

a  

f  

p

t  

a

Q

I  

t  

u  

c  

f  

f  

p  

t  

p  

p  

w  

n  

l  

m  

t  

a  

w  

t  

c  

M  

n  

t  

t  

F

 

o  

o  

D  

o  

E  

t  

e  

t

p  

n  

t  

r  

e  

q  

f  

e  

c  
Nomenclature 

Roman letters 

A p surface area of a particle, m 

2 

A βσ interfacial area of the β − σ contained 

within the averaging volume, m 

2 

a v interfacial area per unit volume, m 

−1 

Bi p = h p d p / λσ particle Biot number 

b β vector that maps ∇〈 T β〉 β onto ˜ T β, m

c p specific heat capacity, J kg 
−1 

K 

−1 

d p particle diameter, m 

h pj heat exchange coefficients, W m 

−2 K 

−1 

K β effective thermal dispersion tensor, 

W m 

−1 K 

−1 

l β characteristic length (micro-scale) for the β- 

phase, m 

L β macroscopic characteristic length, m 

m p particle mass, kg 

g weighting function 

N V number of particles contained in the averag- 

ing volume V
n βσ unit normal vector from the β-phase towards 

the σ -phase 

Q βp macro-scale heat transfer rate between the 

continuous phase and particle p , W 

r position vector, m 

r g radius of the averaging volume, m 

s p scalar that maps 〈 T β〉 β − T j onto ˜ T β
T η η = β, σ, temperature in the η-phase, K 

T p particle temperature, K 

〈 T β〉 β intrinsic average temperature for the β- 

phase, K ˜ T β deviation temperature for the β-phase, K 

T 0 
β

undisturbed temperature for the β-phase, K 

t ∗ characteristic time associated with the micro- 

scale diffusion, s 

u β velocity in the β-phase, m s −1 

〈 u β〉 β intrinsic average velocity for the β-phase, 

m s −1 ˜ u β deviation velocity for the β-phase, m s −1 

V averaging volume, m 

3 

x p particle position, m 

Greek letters 

λβ thermal conductivity for the β-phase, W m 

−1 K 

−1 

ω σ volumetric heat source, W m 

−3 

ρη η = β, σ, density for the η-phase, kg m 

−3 

αη η = β, σ, volume fraction of the η-phase 

δβσ Dirac distribution associated with the β − σ inter- 

face 

γ β indicator function for the β-phase 

β continuous phase 

σ dispersed phase 

ξ Laplace variable, s −1 

Superscripts 

∞ quasi-steady 
∗ time convolution product 

apacity and the volume fraction of the β-phase. The last term in

q. (1) corresponds to the macro-scale heat transfer rate between

he continuous phase and the N V particles contained within the

veraging volume V . For the p th -particle, the corresponding heat

ransfer reads 
 βp = 

∫ 
A p

n · λβ∇T β d S (3) 

here A p is the surface of particle p and n denotes the outward

nit normal vector on the particle surface A p . 

The second equation in the Euler–Lagrange description

q. (2) describes the averaged particle temperature T p , where

 mc p ) p is the product of the mass and heat capacity of the

p th -particle. The model for the macro-scale heat transfer Q βp is

sually based on the description of heat transfer in the case of an

solated particle ( Michaelides and Feng, 1994 ). To solve the heat

ransfer problem, this description uses a decomposition of the

urrounding phase temperature into an undisturbed temperature

nd a disturbance due to the presence of the particle. Generalizing

rom an isolated particle to a set of particles, the undisturbed tem-

erature is often viewed as a macro-scale temperature 〈 T β〉 β and

he resulting heat exchange reads ( Ling et al., 2016; Michaelides

nd Feng, 1994 ) 

 βp = 

∫ 
A p

n · λβ∇〈 T β〉 β d S + A p h p

(〈 T β〉 β − T p
)

+ A p

∫ t

0

K p (τ ) 
d 
(〈 T β〉 β − T p

)
dτ

d τ (4) 

n Eq. (4) , the first term refers to the undisturbed heat flux seen by

he particle. It represents the flux that would have entered the vol-

me occupied by the continuous phase in the absence of the parti-

le. The second term corresponds to the quasi-steady heat transfer

rom the particle to the surrounding phase due to temperature dif-

erence. The heat exchange coefficient h p between the continuous

hase and the particle is usually expressed in terms of the par-

icle Nusselt number as Nu p = h p d p /λβ for which numerous em-

irical functions of the particle Reynolds number have been pro-

osed (see for instance Ranz and Marshall, 1952; Whitaker, 1972 )

ith the asymptotic limit Nu p = 2 when the particle Reynolds

umber effect can be neglected. The last term in Eq. (4) is non-

ocal and captures history effects due to the transient develop-

ent of the temperature in the particle vicinity. The kernel func-

ion K p ( τ ) that appears in the history integral has been calculated

nalytically in Michaelides and Feng (1994) for an isolated particle

ithout a velocity difference between the continuous phase and

he particle, and the results have been extended to finite parti-

le Reynolds number in Balachandar and Ha (2001) and Feng and

ichaelides (1996) . Usual simplifications of this problem include

eglecting the non-local contribution to decrease the computa-

ional cost and replacing the first term by the time derivative of

he undisturbed temperature ( Ling et al., 2016; Michaelides and

eng, 1994 ). 

In this work, our goal is to propose alternative expressions

f the heat transfer rate using an up-scaling methodology based

n spatial averaging with closure ( Carbonell and Whitaker, 1984;

avit et al., 2013; Quintard and Whitaker, 20 0 0 ). This methodol-

gy allows us to derive macro-scale equations that, unlike standard

uler–Lagrange approaches, take into account heat transfer be-

ween particles in the heat exchange Q βp through a matrix of heat

xchange coefficients. To be more clear about heat transfer be-

ween particles, these have not to be confused with direct particle–

article exchanges that take place during collisions and that are

egligible in the dilute regime considered in this work. Here, heat

ransfer between particles take place through the continuous car-

ier phase and thus will be referred as indirect particle–particle

xchanges. The resulting heat exchange coefficients involve both a

uasi-steady and a non-local contribution that captures history ef-

ects. Our approach further provides closure problems that link the

ffective transport coefficients to the micro-scale geometry. To re-

over more standard formulations, the problem can be simplified
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verage of ψ β is defined as 

 ψ β〉 β = 

g ∗ ψ β

g ∗ γβ
= 〈 ψ β〉

αβ
(11) 

Second, we now average the micro-scale heat Eq. (5) on the

veraging volume V, by multiplying the micro-scale transport Eq.

5) by γβg ( x − r ) , and then integrating it over the physical space

o finally apply the general transport theorem ( Whitaker, 1985 ),

hich leads to 

 t 

(
( ρc p ) β〈 T β〉 ) + ∇ · 〈 ( ρc p ) βT βu β〉 = ∇ · 〈 λβ∇T β〉

+ 〈 n βσ · λβ∇T βδβσ 〉 (12)

here δβσ is the Dirac delta function associated to the interface

etween the two phases. 

Next, we introduce the perturbation decomposition of ψ β into

n average and a deviation 

˜ ψ β (see for instance Gray, 1975 )

 β = 〈 ψ β〉 β + 

˜ ψ β (13) 

Finally, following Carbonell and Whitaker (1984) ,

ray (1975) and Quintard and Whitaker (1993a) , we write

he averaged equation, Eq. (12) , as 

∂ t 
(
αβ( ρc p ) β〈 T β〉 β)

+ ∇ ·
(
αβ( ρc p ) β〈 T β〉 β〈 u β〉 β)

= ∇ ·
(
αβλβ∇〈 T β〉 β + 〈 λβ

˜ T βn βσ δβσ 〉)
−∇ αβ · λβ∇ 〈 T β〉 β + 〈 n βσ · λβ∇ ̃

 T βδβσ 〉
−∇ ·

(
( ρc p ) β〈 ̃  T β˜ u β〉 β)

(14) 

here we have ignored the variations of the physical properties

ithin the averaging volume. 

The Lagrangian description of the dispersed phase is obtained

y integrating the micro-scale heat transfer Eq. (8) over each par-

icle ( Crowe et al., 2011 ). The boundary condition Eq. (6) leads to

he following equation for the averaged particle temperature T p 

(mc p ) p 
dT p 

dt 
= 

∫ 
A p

n · λβ∇T β d S + ω p V p (15) 

here V p is the volume of the particle. At this stage of the de-

elopments, we have obtained the macro-scale Euler–Lagrange de-

cription that corresponds to Eqs. (14) and (15) of the heat transfer

roblem. However, they are not in a closed form since the tem-

erature deviations ˜ T β are still present. To get rid of these devi-

tions, it is necessary to propose an estimation of the deviation

rom its boundary value problem. In order to obtain the govern-

ng equation for the deviation 

˜ T β, we introduce the decomposition

q. (13) in the micro-scale Eq. (5) , and then we subtract the av-

raged Eq. (14) divided by αβ . The micro-scale transport equation

or the deviation may be written as 

( ρc p ) β∂ t ̃  T β + ( ρc p ) βu β · ∇ ̃

 T β + ( ρc p ) β˜ u β · ∇〈 T β〉 β
= ∇ ·

(
λβ∇ ̃

 T β
)

− α−1 
β

∇ · 〈 λβ
˜ T βn βσ δβσ 〉

−α−1 
β

〈 n βσ · λβ∇ ̃

 T βδβσ 〉 + α−1 
β

∇ ·
(
( ρc p ) β〈 ̃  T β˜ u β〉) (16) 

he corresponding boundary conditions are also obtained by in-

roducing the decomposition Eq. (13) in the boundary conditions

qs. (6) and (7) . As a result, one obtains the following set of

oundary conditions on each particle surface A p , 1 ≤ p ≤ N V 

 

 β = T σ − 〈 T β〉 β (17) 

β∇ ̃

 T β · n βσ =
(
λσ∇ T σ − λβ∇ 〈 T β〉 β)

· n βσ (18) 

hese equations can be simplified through an evaluation of the or-

ers of magnitude of the different terms. Introducing the decom-

osition Eq. (13) in the boundary conditions (7) and in the no-slip

w

ondition (u β = 0) at the β − σ interface leads to an estimation

f the order of magnitude of the velocity deviation ̃

 u β and of ̃  T β as

see Carbonell and Whitaker, 1984; Quintard and Whitaker, 1993a;

uintard and Whitaker, 20 0 0 ) 

 

 β = O
(〈 u β〉 β)

(19) 

 

 β = O
(

l β

L β
〈 T β〉 β

)
(20) 

urthermore, according to the developments in Quintard and

hitaker (1993a,b) , the specific area can be estimated by 

 n βσ γβδβσ 〉 = A βσ

V = O 

(
αβ

l β

)
(21) 

here l β is the micro-scale characteristic length. Eqs. (19) –(21) al-

ow us to obtain the following estimates 

β∇ 

2 ˜ T β = O
(

λβ

l βL β
〈 T β〉 β

)
(22) 

−1 
β

∇ · 〈 λβ
˜ T βn βσ δβσ 〉 = O

(
λβ

L 2 
β

〈 T β〉 β
)

(23) 

−1 
β

∇ ·
(
αβ( ρc p ) β〈 ̃  T β˜ u β〉 ) = O 

((
ρβc p 

)
β

l β

L 2 
β

〈 T β〉 β〈 u β〉 β
)

(24) 

ρβc p 
)
β

u β · ∇ ̃

 T β = O
((

ρβc p 
)
β

1 

L β
〈 T β〉 β〈 u β〉 β

)
(25) 

sing the length-scale constraint l β 	 L β further leads to 

−1 
β

∇ · 〈 λβ
˜ T βn βσ δβσ 〉 	 λβ∇ 

2 ˜ T β (26) 

−1 
β

∇ ·
(
αβ( ρc p ) β〈 ̃  T β˜ u β〉 ) 	

(
ρβc p 

)
β

u β · ∇ ̃

 T β (27) 

herefore, the micro-scale transport equation for the deviation

q. (16) can be rewritten as 

( ρc p ) β∂ t ̃  T β + ( ρc p ) βu β · ∇ ̃

 T β + ( ρc p ) β˜ u β · ∇〈 T β〉 β
= ∇ ·

(
λβ∇ ̃

 T β
)

− α−1 
β

〈 n βσ · λβ∇ ̃

 T βδβσ 〉 (28) 

s previously discussed, the thermal conductivity in the solid, λσ ,

s much larger than the thermal conductivity in the β-phase and

hus the boundary condition Eq. (6) yields 

 

∇T σ | = 

∣∣∣∣λβ

λσ
∇T β

∣∣∣∣ 	
∣∣∇T β

∣∣ (29) 

his implies that the temperature field can be considered uniform

ithin each particle and that the boundary condition Eq. (18) can

e eliminated from the micro-scale boundary value problem for

he deviation while boundary condition Eq. (17) reads 

 

 β = T p − 〈 T β〉 β at A p , 1 ≤ p ≤ N V (30) 

ne way to proceed further would be to solve simultaneously

he macroscopic problem and the problem for the deviation 

˜ T β,

hich in many ways is more complex than solving the initial one

qs. (5) –(8) . There is another way to proceed that consists in build-

ng an approximate form of the deviations ˜ T β by mapping it to

acroscopic quantities through closure variables. As we will see,

his makes it possible to fully uncouple micro- and macro-scale

roblems. 

.2. Unsteady closure 

In the boundary value problem for the deviation Eqs. (17) –(28) ,

e can identify the macroscopic quantities (T p − 〈 T β〉 β | x p ) with
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1 ≤ p ≤ N V and ∇〈 T β〉 β . These terms can be treated as macro-

scopic source terms responsible for generating the spatial deviation
 T β . In this way, deviations can be mapped to these source terms

( Carbonell and Whitaker, 1984; Quintard et al., 1997; Quintard and

Whitaker, 1993a; 20 0 0; Zanotti and Carbonell, 1984 ) through clo-

sure variables. 

To build the form of a local solution for the spatial deviation,

we first follow Davit and Quintard (2012) and Moyne (1997) to ex-

press the deviation in the form of a time convolution according

to 

 T β = −
N V ∑ 

p=1

s p ∗ ∂ t 
(〈 T β〉 β | x p − T p 

)
+ b β · ∗∂ t ∇〈 T β〉 β (31)

where s p and b β are the closure variables, which depend on space

x and time t . The time convolution, denoted here by ∗, is defined

for the functions a and b as 

( a ∗ b ) (t) = 

∫ t

0

a (t − τ ) b(τ ) d τ (32)

The closure variables are solutions of unsteady closure problems

given in Appendix A.2 , in which we have assumed thermal equi-

librium at t < 0. These closure problems need to be solved in ge-

ometries representative of the structure of interest and, in many

cases, this is done in unit cells with periodic boundary condi-

tions. Effects of using periodic unit cells on the macroscopic results

and the validity of the method in ordered and disordered systems

are further discussed in Quintard et al. (1997) and Quintard and

Whitaker (1993a) . For disordered media, the periodicity condi-

tions can be used when the size of the unit cell is sufficiently

large compared to the correlation lengths of the heterogeneities

( Quintard et al., 1997 ). 

For the Eulerian field, we inject Eq. (31) in the averaged trans-

port Eq. (14) and obtain 

∂ t 
(
αβ( ρc p ) β〈 T β〉 β)

+ ∇ ·
(
αβ( ρc p ) β〈 T β〉 β〈 u β〉 β)

= ∇ ·
(
K ββ · ∗∂ t 

(∇〈 T β〉 β))
−

N∑
p=1

g(x − x p ) Q βp 

+ 

N ∑ 

p=1

∇ ·
(
d βp ∗ ∂ t 

(〈 T β〉 β | x p − T p
))

(33)

where K ββ is the effective thermal dispersion defined by

Eq. (121) and accounts for thermal conduction, tortuosity and hy-

drodynamic thermal dispersion. The coefficient d βp is an additional

velocity-like coefficient and is defined by Eq. (122) . Finally, Q βp 

represents the macro-scale heat transfer between the continuous

phase and the particle p and is defined by 

Q βp = 

∫ 
A p

n · λβ∇〈 T β〉 β d S + A p

N V ∑ 

k =1

h pk ∗ ∂ t 
(〈 T β〉 β | x k − T k

)
− v βp · ∗∂ t

(∇〈 T β〉 β)
(34)

The effective properties h pk defined by Eq. (93) and v βp defined

by Eq. (98) are respectively the effective heat exchange coefficients

and the velocity-like coefficient. 

For the Lagrangian description of the dispersed phase, substi-

tuting Eq. (31) into Eq. (15) and using the definition Eq. (34) of the

macro-scale heat transfer yields for averaged particle temperature

T p 

(mc p ) p 
dT p 

dt 
= Q βp + ω p V p (35)

In these macro-scale Euler–Lagrange equations, both the ther-

mal dispersion tensor, K ββ , and the heat exchange coefficients, h pk ,

appearing in Eqs. (33) –(35) look like classical terms. This contrasts

t

ith the velocity-like v βp and additional velocity-like d βp terms

hat do not appear in the classical macro-scale Euler–Lagrange de-

cription ( Crowe et al., 2011; Ling et al., 2016; Michaelides and

eng, 1994; Simonin, 1996; Zhang and Prosperetti, 1997 ). These can

e calculated from the closure problems given in Appendix A.2 and

heir contributions have been studied in the literature ( Quintard

t al., 1997; Zhang and Huang, 2001 ) for heat transfer in porous

edia with a thermal non-equilibrium model. In this work, we as-

ume that the contributions of the non-classical terms can be ne-

lected compared to the classical terms. In doing so, we obtain the

ollowing simplified model 

∂ t 
(
αβ( ρc p ) β〈 T β〉 β)

+ ∇ ·
(
αβ( ρc p ) β〈 T β〉 β〈 u β〉 β)

= ∇ ·
(
K ββ · ∗∂ t 

(∇〈 T β〉 β))
−

N V∑
p=1

g(x − x p ) Q βp (36)

(mc p ) p 
dT p 

dt 
= Q βp + ω p V p (37)

here 

 βp = 

∫ 
A p

n · λβ∇〈 T β〉 β d S + A p

N V ∑ 

k =1

h pk ∗ ∂ t 
(〈 T β〉 β | x k − T k

)
(38)

.3. Steady-state closure 

Eqs. (36) –(38) are obtained by expressing the spatial deviation

n the form of a time convolution. The main consequence is that

he resulting effective transport coefficients in the model are not

nly depending on the physical properties and the micro-scale ge-

metry but they also depend upon time. In addition, the macro-

cale Euler–Lagrange equations with unsteady closure problems

ust degenerate into the quasi-steady version when the macro-

copic time is significantly greater than the characteristic time as-

ociated to the relaxation of the micro-scale conduction process

 Davit and Quintard, 2012; Moyne, 1997 ). This constraint has been

iscussed in previous works ( Quintard et al., 1997; Quintard and

hitaker, 1993a ) and can be written as 

λβt 

( ρc p ) β l 2 
β

� 1 (39)

When this is verified, the unsteady term in the transport equa-

ion for ˜ T β can be neglected, so that the boundary value problem

or the deviation can be treated as quasi-steady. Following previous

orks Carbonell and Whitaker (1984) , Quintard et al. (1997) and

uintard and Whitaker (1993a, 20 0 0) , we can then express the de-

iation in terms of the macroscopic source terms as 

 

 β = −
N V ∑ 

p=1

s ∞ 

p 

(〈 T β〉 β | x p − T p 
)

+ b 

∞ 

β · ∇〈 T β〉 β (40)

ere, the mapping variables s ∞ 

p and b 

∞ 

β
are solutions of the quasi-

teady problems given in Appendix A.2 . This asymptotic behavior

orresponds to the transition form s p and b β to the limit u (t) s ∞p 
nd u (t) b 

∞ 

β
in the convolution product defined by Eq. (31) , where

 ( t ) is the Heaviside function. These decompositions can be written

as follows ( Davit and Quintard, 2012 )

 p − u (t) s ∞ 

p = s ∗p (41)

 β − u (t) b 

∞ 

β = b 

∗
β (42)

here s ∗p and b∗
β

represent the contribution of history effects in

he unsteady closure problem and verify respectively 

lim 

→ + ∞
s ∗p = 0 , and lim 

t→ + ∞
b 

∗
β = 0 (43)
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Fig. 2. Comparison of Chang’s unit cell (dashed line) with a spatially periodic sys- 

tem (solid line).
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he mapping variables associated with the history effects s ∗p and

 

∗
β

are solutions of the closure problems related to the his-

ory effects (Appendix A.3 ). These closure problems are obtained

y introducing the decompositions Eqs. (41) and (42) into the

nsteady closure problems (Appendix A.1 ), then subtracting the

uasi-stationary closure problems (Appendix A.2 ) multiplied by

 ( t ).

Similarly, introducing the decompositions Eqs. (41) and (42) re-

pectively in Eqs. (93) and (121) yields the following expression for

he effective transport coefficients h pk and K ββ

 pk = u (t) h 

∞ 

pk + h 

∗
pk (44)

 ββ = u (t) K 

∞ 

ββ + K 

∗
ββ (45)

here h ∗
pk 

and K∗
ββ

are respectively the effective heat exchange

nd the effective thermal dispersion coefficients related to history

ffects. The definitions of these coefficients are given in appendix

qs. (115) –(125) .

Lastly, by introducing Eqs. (44) and (45) into the averaged

ransport equation for the β-phase Eq. (36) and the equation for

he averaged particle temperature Eq. (38) , the macro-scale Euler–

agrange equations with unsteady closure problems can be written

s 

∂ t 
(
αβ( ρc p ) β〈 T β〉 β)

+ ∇ ·
(
αβ( ρc p ) β〈 T β〉 β〈 u β〉 β)

= ∇ ·
(
K 

∞ 

ββ · ∇〈 T β〉 β)
−

N V ∑
p=1

g(x − x p ) Q βp 

+ ∇ ·
(
K 

∗
ββ · ∗∂ t

(∇〈 T β〉 β))
(46) 

(mc p ) p 
dT p 

dt 
= Q βp + ω p V p (47) 

here 

 βp = 

∫ 
A p

n · λβ∇〈 T β〉 β d S + A p

N V ∑ 

k =1

h 

∞ 

pk 

(〈 T β〉 β | x k − T k
)

+ A p

N V ∑ 

k =1

h 

∗
pk ∗ ∂ t

(〈 T β〉 β | x k − T k
)

(48) 

In the averaged transport equation for the β-phase Eq. (46) ,

he first term corresponds to the quasi-steady conductive term; the

econd term to the macro-scale heat transfer between the continu-

us phase and particles in the averaging volume; and the last term

akes the form of a history integral that accounts for memory ef-

ects of the unsteady thermal conduction. The appearance of this

erm is a direct consequence of the decomposition in the quasi-

teady and memory contributions of the effective thermal disper-

ion. 

In the macro-scale heat exchange Eq. (48) , the first term looks

ike, at least formally, the undisturbed heat flux contribution while

he second term corresponds to the quasi-steady thermal transfer

rom the particle to the continuous phase. The last term represents

he unsteady thermal diffusion due to the temporal variation of

he thermal boundary layer around the particles in the averaging

olume. This contribution accounts for the effect of the past his-

ory temperature changes of the β-phase and particles within the

veraging volume to the current temperature change of the p th -

article. 

. Theoretical comparison with standard models

When comparing the classical Euler–Lagrange model with the

roposed model (46) –(48) , the main differences are the convolu-

ion term in Eq. (46) and the expression of the macro-scale heat
xchange term Q βp . In this section, we review these differences in

etail for the cases of isolated particles and clouds of particles. 

.1. Isolated particle 

As mentioned in the introduction, the modeling of heat ex-

hange between the filtered continuous phase and the particles is

sually based on the description of heat transfer for an isolated

article in an infinite medium ( Crowe et al., 2011; Ling et al., 2016;

ichaelides and Feng, 1994; Zhang and Prosperetti, 1997 ). This de-

cription uses a decomposition of the surrounding β-phase tem-

erature into an undisturbed thermal field T 0 
β

, which is not in-

uenced by the presence of the particle, and a disturbance field,

hich is entirely due to the influence of the heat transfer from the

article. 

In order to compare our model to the standard results in

he case of an isolated particle, we consider the case of a sin-

le isolated spherical particle with no macroscopic gradient. We

onsider an immobile sphere in a spherical unit cell, as repre-

ented in Fig. 2 , which is a spherical version of Chang’s unit cell

 Chang, 1983 ). This unit cell has been extensively studied in the

iterature ( Quintard and Whitaker, 1993b; 1995 ) as it allows to

btain an analytical solution of the closure problems. Following

uintard and Whitaker (1995) , the correspondence between the

hang’s unit cell and the spatially periodic system is obtained by

equiring that the volume fraction be equal. This leads to l 3 
β

=
(4 / 3) πR 3 where R is the radius of the Chang’s unit cell illustrated

n Fig. 2 . The radius of the particle, r p , and the characteristic length

f the unit cell, R , are linked by 

 = 

r p (
1 − αβ

)1 / 3
(49) 

The closure problem associated to Chang’s unit cell for the

apping variable s ∞ 

p can be written as

 = λβ∇ 

2 s ∞p − α−1 
β

A p 

V h 

∞ 

p , for r p ≤ r ≤ R (50) 

 

∞ 

p = 1 , at r = r p (51) 

 · ∇s ∞ 

p = 0 , at r = R (52) 

verage: 〈 s ∞ 

p 〉 β = 0 (53)
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frame attached to the continuous phase allows us to further re-

move the convective term in Eq. (46) and the undisturbed heat

flow in Eq. (48) . 

In this case, the macroscopic description is a 0D problem with 

αβ( ρc p ) β
d〈 T β〉 β

dt 
= − 1 

V 

N V ∑ 

p=1

Q βp (72)

(mc p ) p 
dT p 

dt 
= Q βp + ω p V p (73)

where 

Q βp = 

N V ∑ 

k =1

A p h 

∞ 

pk

(〈 T β〉 β | x k − T k
)

+ 

N V∑
k =1

A p h 

∗
pk ∗ ∂ t

(〈 T β〉 β | x k − T k
)

(74)

Here, we have used the classical box weighting function g defined

by 

g(x ) = 

{
1 

V , x ∈ V 
0 , x / ∈ V 

(75)

In this framework with no average gradient, only the closure prob-

lems for s ∞ 

p and s ∗p need to be solved.

As stated previously, the accuracy of the macro-scale models

is assessed by comparing results to computations of the complete

micro-scale problem. In the remainder of this section, these micro-

scale simulations are termed Direct Numerical Simulations (DNS).

We consider two different studies. In the first study, the validity

of both the unsteady and quasi-steady models is addressed for a

micro-scale one-dimensional geometry for which the closure prob-

lems as well as the macroscopic equations can be solved analyti-

cally. In the second study, we consider only the quasi-steady ap-

proximation and we assess the validity of a diagonal approxima-

tion of the heat exchange matrix for two- and three-dimensional

geometries. DNS of the micro-scale problem have been performed

using the CALIF 3 S software (CALIF) that employs unstructured fi-

nite volume discretization. The interested reader is referred to

Piar et al. (2013) for a detailed presentation of the finite volume

discretization based on the SUSHI scheme for the approximation

of the diffusive fluxes. 

5.1. Validity of the quasi-steady closure 

In this section, we compare the unsteady and quasi-steady

models. The micro-scale structure is a one-dimensional geometry

illustrated in Fig. 5 and consists in an array of three particles with

the same diameter d p and separated by the distance l β . 

The averaging volume is assumed to be spatially periodic ( Davit

and Quintard, 2015; Quintard and Whitaker, 1993a ). Further, taking

into account the symmetry with respect to the center of particle

1, the matrix of heat exchange coefficients is symmetric h ∞ 

pk
= h ∞ 

kp
.

Moreover the considered geometry allows us to solve analytically

the coefficients and to determine them all from only h ∞ 

11 
and h ∞ 

12 
(see Appendix C.1 ). 

The macro-scale Eulerian–Lagrangian ordinary differential equa-

tions are non-dimensionalized with the following dimensionless
Fig. 5. Micro-scale one-dimensi
ariables 

ˆ 
 = l β∇ ; ˆ t = λβ

l 2 
β ( ρc p ) β

t ; ˆ ω p = 

l 2
β

T r λβϕ 

ω p ;

ϕ = 

( ρc p ) p 

( ρc p ) β
; ˆ h 

∞ 

pk = 

l 2 
β

A p 

λβV 
h 

∞ 

pk ; ˆ T η = 

T η − T r 

T r 
, with η = β, k (76)

here T r refers to some reference temperature. The corresponding

acro-scale equations can be expressed in matrix form according

o 

d 

d ̂ t 
[ ̂  T ] = H 

∞ · [ ̂  T ] + [ ̂  ω ] (77)

here [ ̂  T ] and [ ̂  ω ] are column vectors and H 

∞ is a four-by-four

atrix. All three can be represented explicitly as 

 ̂

 T ] = 

⎛ ⎜⎝〈 ̂  T β〉 β
ˆ T 1 
ˆ T 2 
ˆ T 2 ′ 

⎞⎟ ⎠ 

; [ ̂  ω ] =

⎛⎜ ⎝ 

0 

ˆ ω 1 

ˆ ω 2 

ˆ ω 2 ′ 

⎞⎟⎠ (78)

 

∞ = 

3

ασϕ 

⎛⎜⎜⎝
−ασ ϕ 

αβ

ˆ h 

∞ 

ασ ϕ 
3 αβ

ˆ h 

∞ 

ασ ϕ 
3 αβ

ˆ h 

∞ 

ασ ϕ 
3 αβ

ˆ h 

∞ 

ˆ h 

∞ −ˆ h 

∞
11 −ˆ h 

∞
12 −ˆ h 

∞
12

ˆ h 

∞ −ˆ h 

∞
12 −ˆ h 

∞
11 −ˆ h 

∞
12

ˆ h 

∞ −ˆ h 

∞
12 −ˆ h 

∞
12 −ˆ h 

∞
11

⎞⎟⎟⎠ (79)

here ˆ h ∞ = ̂

 h ∞ 

11 
+ 2 ̂ h ∞ 

12 
. 

By using the matrix exponential exp (.) (see e.g., Magnus, 1954 ),

he solution of the linear differential equation system Eq. (77) is

iven by 

 ̂

 T ]( ̂ t ) = 

(∫ t̂

0

exp ( u H 

∞ ) d u 

)
· [ ̂  ω ] + e ˆ t H∞ · [ ̂  T 0 ] (80)

here the vector [ ̂  T 0 ] represents the vector [ ̂  T ] at the initial state.

he matrix H 

∞ is diagonalizable with three distinct eigenvalues a 0 ,

 1 and a 2 defined by 

 a 0 , a 1 , a 2 } =
⎧⎨⎩ 

0 , −
3 

(
ˆ h 

∞ 

11 − ˆ h 

∞
12

)
ασϕ 

, −3 ̂

 h 

∞ 

(
1 

ασϕ 

+ 1

αβ

)⎫⎬⎭ (81)

e apply successively the Cayley–Hamilton theorem and

ylvester’s formula to exp ( u H 

∞ ) (for example, see Horn and

ohnson, 1990; Cvetkovic et al., 1997 ). Accordingly, Eq. (80) reads 

 ̂

 T ]( ̂ t ) = F 0 · [ ̂  T 0 ] −
2 ∑ 

i =1

1 

a i 
F i · [ ̂  ω ] + F 0 · [ ̂  ω ] ̂ t 

+ 

2 ∑ 

i =1

e a i ̂ t F i ·
(

1 

a i 
[ ̂  ω ] + [ ̂  T 0 ] 

)
(82)

here F i are the Frobenius covariants of the matrix H 

∞ , defined

by 
onal system with N V = 3 . 



Fig. 6. Comparison of the quasi-steady closure with the reference solution obtained by averaging Direct Numerical Simulations (DNS) results of the micro-scale problem.

Table 1

Model parameters.

Parameter
λσ

λβ

(ρc p ) σ
(ρc p ) β

ασ T r ˆ ω 1 ˆ ω 2 ˆ ω 2′

Value 10 3 10 3 10−3 300 0 10 5
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 i = 

2 ∏ 

i =0 , j � = i

1 

a i − a j 

(
H 

∞ − a j I
)

(83) 

here I is the identity matrix. 

The micro-scale problem, Eqs. (5) –(8) , is solved numerically to

btain the T β and T σ fields, which can be averaged to produce the

eference values for the macro-scale models. Comparisons are car-

ied out for scenarios of dust explosion typical of nuclear safety

 Table 1 ). Results in Fig. 6 show that the values obtained by the

uler–Lagrange model with the quasi-steady closure are in very

ood agreement with the reference values, particularly for a time

reater than 0.5. For shorter times ( i.e. ˆ t < 0 . 5 ), a good agreement

etween results is observed for the averaged β-phase temperature,

s well as the temperature of particles 2 and 2 ′ . However, the tem-

erature of the inert particle (particle 1) decreases initially and this

s in clear contradiction with the micro-scale results Fig. 6 and in

iolation of physical principles. 

To determine the origin of this difference and whether it is a

onsequence of the quasi-steady closure, we now consider the so-

ution of the problem with history effects and compare the ref-

rence solution, the quasi-steady model and the fully transient

ormulations. The closure problems for the memory variable are

olved analytically in the Laplace domain ( Appendix C.2 ) and the

ulerian–Lagrangian model with the unsteady closure is rewritten

n the Laplace domain as 

[ ̂  T ] − [ ̂  T 0 ] = 

(
H 

∞ + ξH 

∗) · [ ̂  T ] + [ ̂  ω ] (84) 

here the overbar denotes the transformed variable in the Laplace

omain. H 

∗ is defined by analogy to the matrix H 

∞ using the

emory heat exchange coefficients. The solution of the system of

inear equations (84) is straightforward and the temperatures in

hysical space are obtained by using numerical inverse Laplace al-

orithms. Results in Fig. 7 show that the model with the unsteady

losure is in perfect agreement with the reference solution. The av-
raged temperatures are also very close to the two previous results

f ˆ t < 0 . 5 and the three types of results are similar for ˆ t > 0 . 5 . 

This comparison demonstrates that our models accurately pre-

ict the averaged temperatures, even in the short-time limit. The

uasi-steady assumption is valid when the constraint Eq. (39) is

erified, which means that the history effects can be neglected. In

he next study case, we consider only the quasi-steady model and

ssume that this constraint is verified. 

.2. Validity of the diagonalization for the heat exchange coefficients 

atrix 

We now assess the accuracy of the quasi-steady macro-scale

odel for a two-dimensional micro-scale geometry and the impact

f a diagonal approximation of the heat exchange coefficients ma-

rix Eq. (79) . Such a diagonalization consists in neglecting the in-

irect exchange between particles in Eqs. (72) –(74) . To clarify this

oint, consider the following expression of the heat exchange 

 βp = A p h 

∞
p 

(〈 T β〉 β | x p − T p 
)

+ 

N V∑
k =1

A p h 

∞ 

pk ( T p − T k ) (85) 

here h ∞ 

p correspond to lumped coefficients already defined and

hat are recalled below 

 

∞ 

p = 

N V ∑ 

k =1

h 

∞ 

pk (86) 

ote that this expression is only valid when there is no aver-

ged temperature gradient, thus allowing us to identify the macro-

cale continuous phase temperature 〈 T β〉 β | x k with 〈 T β〉 β | x p . The

ost straightforward way to obtain a diagonal approximation is

herefore to neglect the sum in Eq. (85) , which is often referred

o as lumping the coefficients in the matrix. When this is done,

he diagonal coefficients can be calculated from a single closure

roblem corresponding to the sum of all mapping variables (see

ppendix D ). This greatly simplifies the determination of the heat

xchange coefficients and allows us to obtain analytical expressions

or simple unit cells like the one illustrated in Fig. 2 . 

For instance, the lumped coefficients can be solved analytically

or the cylindrical version of the Chang’s unit cell shown in Fig. 2 .

s for the spherical case, we compare the analytical solution ob-

ained for Chang’s unit cell with the numerical solution of the





Fig. 10. Comparison of averaged DNS results with the macro-scale predictions for both the quasi-steady and the quasi-steady lumped approximation – two-dimensional case

N V = 3 × 3 . 

Table 2

Dimensionless heat exchange coefficients ˆ h pk = h ∞ 
pk 

d p /λβ for different values of N V 

and ασ = 10 −3 for a periodic arrangement of in-line cylinders ( ‖ denotes particles 

on the same x -axis, ⊥ between the first and the second rows and ⊥⊥ between the 

first and the third rows).

N V ˆ h 11 
ˆ h 12 ‖ ˆ h 12 ⊥ ˆ h 13 ‖ ˆ h 13 ⊥ ˆ h 13 ⊥⊥ 

1 0.737

3 × 3 0.537 0.01 0.039

5 × 5 0.492 −0 . 028 0.0017 0.0186 0.0218 0.025

e

o

N  

m  

t

t  

s

L  

i  

R  

e  

w  

p  

t  

t  

l  

q  

s  

t

 

e

t  

s  

t  

a  

l

t  

p

 

p  

t  

c

T  

d  

n  

i

 

v  

v  

o  

a  

t  

h  

s  

s  

t  

t  

p  

i  

a  

p  

d  

i  

w  

a  

q  
xcept for the diagonal coefficient h ∞ 

pp which is of the same order

f magnitude. Also note that the value of h ∞ 

p does not depend on

 V since the lumped coefficients can be obtained from summing

apping variables s defined in Appendix D and solved for the spa-

ially periodic cell shown in Fig. 8 . 

Next, we compare the average temperature 〈 T β〉 β and the

emperatures of particles 1, 2 and 2 ′ obtained from micro-scale

imulations to those obtained from the macro-scale Eulerian–

agrangian description using the heat exchange coefficients given

n Table 2 and the same parameter values reported in Table 1 .

ecall from Eq. (85) that the lumped approximation is formally

quivalent to the full macro-scale heat exchange coefficients matrix

hen there is no temperature difference between particles. The

roposed case involving active and inert particles leads to large

emperature differences between particles and, therefore, allows us

o test the validity of the lumped approximation. Parameters are

isted in Table 1 and results are plotted in Fig. 10 . We find that the

uasi-steady model is in good agreement with the reference micro-

cale simulations for a dimensionless time greater than 3 (recall

hat the theoretical constraint is ˆ t � 1 ). 

The lumped approximation yields a good agreement for the av-

raged β-phase temperature 〈 T β〉 β but an underestimation of the

emperature difference between particles. In order to get more in-
ight for larger temperature differences between particles, we ex-

end the previous case to N V = 5 with only particle 1 remaining

ctive and ˆ ω 1 = 100 . The results reported in Fig. 11 show that the

umped approximation still yields a good agreement for 〈 T β〉 β at

ˆ 
 > 4 but fails to capture differences observed in DNS results for

articles 1 and 3. 

We further remark that other diagonal approximations may

roduce better results. In this specific configuration, Fig. 12 shows

hat we obtain slightly better results if we substitute the lumped

oefficients by the diagonal coefficients h ∞ 

pp reported in Table 2 .

his suggests that, depending on the situation of interest, different

iagonalizations may yield better results. This is something that

eeds to be addressed in future works, especially when consider-

ng average gradients of temperature. 

We move finally to the three-dimensional case and assess the

alidity of the lumped approximation for the three-dimensional

ersion of the system illustrated in Fig. 9 that consists in a peri-

dic arrangement of in-line spherical particles. As previously, it is

ssumed that there is no averaged temperature gradient and that

he system is homogeneous except in the x -direction. As a result,

ere again a single row of particles along the x -direction is repre-

entative of the entire system. We do not repeat here all the cases

tudied previously in the two-dimensional case and we restrict to

he case N V = 3 × 3 × 3 . The results reported in Fig. 13 in which

he β-phase average temperature 〈 T β〉 β is compared to the tem-

eratures of particles reflect the same trends as already observed

n the previous two-dimensional case. Here again, the quasi-steady

pproximation leads to a good prediction of the macro-scale tem-

eratures while the lumped approximation fails to accurately pre-

ict the temperatures of particles. It is instructive to note that

n this special case of ordered distribution of spherical particles

ith large temperature difference between particles and with no

veraged temperature gradient in the continuous phase, both the

uasi-steady and the quasi-steady lumped approximation yields



Fig. 11. Comparison of averaged DNS results with the macro-scale predictions for both quasi-steady and quasi-steady lumped approximations – two-dimensional case

N V = 5 × 5 . 

Fig. 12. Comparison of averaged DNS results with the macro-scale predictions for both quasi-steady and quasi-steady diagonal approximations – two-dimensional case

N V = 5 × 5 . 

 

 

 

 

 

6

 

h  

t  

t  
the same averaged temperature for the continuous phase. This be-

havior was expected from Eqs. (68) to (69) as macro-scale Eulerian

description is equivalent to the lumped approximation. This also

means that in this case, the lumped approximation accurately pre-

dict the averaged temperature for the dispersed phase defined by

Eq. (67) . 
. Discussion and conclusion

Using the method of volume averaging with closure, we

ave derived a novel macroscopic Euler–Lagrange model for heat

ransfer in gas-particle mixtures. The primary difference be-

ween our model and the classical one is an expression of heat



Fig. 13. Comparison of averaged DNS results with the macro-scale predictions for both the quasi-steady and the quasi-steady lumped approximation – three-dimensional

case N V = 3 × 3 × 3 . 
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ransfers that captures indirect particle–particle interactions. We

ecall here that indirect exchanges refer to heat transfer between

articles through the continuous carrier phase and have not to be

onfused with direct particle–particle exchanges that take place

uring collisions in dense suspensions. By comparing our theory to

icro-scale computations in simple model cases of particle clouds,

e found that the general formulation with time convolutions is

ble to predict the exact macroscopic temperatures for any time

n a case with no average gradient. This shows that the most

eneral formulation of the heat transfer captures both history ef-

ects and heat exchanges between particles. We have also shown

hat the quasi-steady model accurately captures the temperature

elds for sufficiently long times. This illustrates the usefulness of

he quasi-steady approximation which is, in practice, frequently

dopted when the constraint Eq. (39) is verified. 

We have further shown that the standard formulations can be

ecovered from a diagonalization approximation of the exchange

atrix. In particular, a lumped matrix can be used and the di-

gonal coefficients can be obtained by solving the closure prob-

em for a unit cell with an isolated particle, similarly to the classi-

al approach. This approximation is formally equivalent to the full

acro-scale model when the temperature differences between par-

icles can be neglected. This approximation was tested in the case

f two- and three-dimensional systems. The simplified version of

he model was able to accurately describe the average tempera-

ure 〈 T β〉 β . However, the lumped approximation failed in capturing

emperature differences between particles, which is due to the fact

hat the indirect exchange between the particles is neglected. 

The considered model cases of particle clouds, even if very sim-

le, have led us to a better fundamental understanding of the

odels. The validity of the various macro-scale approximations

ave been assessed in cases with large temperature difference be-

ween particles within the averaging volume but no average gradi-

nts of temperature. Therefore, limitations of the standard descrip-

ion, which neglect both indirect exchange between particles and

emory effects, must be further evaluated in practical cases with

acroscopic gradients. 

Such practical cases would require more realistic configurations

uch as random arrangements of spherical particles investigated

n Sun et al. (2015) and Thiam et al. (2019) for the closure of
ulerian–Eulerian heat transfer using direct numerical simulations.

his would represent a highly challenging task since different ar-

angements that correspond to the same volume fraction may lead

o very different heat transfer coefficients values. One could then

dopt the methodology followed in the Eulerian–Eulerian frame-

ork by using ensemble average of a number of realizations to

et relationships for the effective properties such as h pk = h pk (αβ ) .

owever, it is not clear at this stage on how this methodology may

pply in the Eulerian–Lagrangian framework ( Kriebitzsch et al.,

013 ) and this calls to future work. 

ppendix A. Closure problems 

In order to obtain the closure problems for the mappings vari-

bles, we introduce Eq. (40) in the local problem for the deviation
 

 β and proceed in the standard way in the volume averaging the-

ry. In doing so, we obtain N V identical closure problems I k for the

ariables s k and the closure problem II for variable b β . These prob-

ems are as follows. 

1. Unsteady closure problems 

Problem I k for s k with 1 ≤ k ≤ N V

ρβc p 
)
β

(
∂ t s k + u β · ∇s k

)
= λβ∇ 

2 s k

− α−1
β

N V ∑ 

p=1

g(x − x p ) A p h pk , in the β-phase (88) 

 k = 1 , at A k (89) 

 k = 0 , at A j with j � = k (90) 

eriodicity: s k (x + r ) = s k (x ) (91) 

nitial condition: s k = 0 , at t = 0 (92) 

here: 

 pk = − 1

A p 

∫ 
A p

n · λβ∇s k d S (93)
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– Problem II for b β(
ρβc p 

)
β

(
∂ t b β + u β · ∇b β + u 

′ 
β

)
= λβ∇ 

2 b β

− α−1
β

N V ∑ 

k =1

g(x − x p ) v βp , in the β-phase (94)

b β = 0 , at A p , with 1 ≤ p ≤ N V (95)

Periodicity: b β (x + r ) = b β (x ) (96)

Initial condition: b β = 0 , at t = 0 (97)

where: 

v ∞ 

βp = 

∫ 
A p

n · λβ∇b β d S (98)

A2. Quasi-steady closure problems 

– Problem I ∞ 

k
for s ∞ 

k
with 1 ≤ k ≤ N V (

ρβc p 
)
β

u β · ∇ s ∞k = λβ∇ 

2 s ∞k 

− α−1
β

N V ∑ 

p=1

g(x − x p ) A p h 

∞ 

pk , in the β-phase (99)

s ∞ 

k = 1 , at A k (100)

s ∞ 

k = 0 , at A j with j � = k (101)

Periodicity: s ∞ 

k (x + r ) = s ∞ 

k (x ) (102)

Average: 〈 s ∞ 

k 〉 β = 0 (103)

where: 

h 

∞ 

pk = − 1

A p 

∫ 
A p

n · λβ∇s ∞ 

k d S (104)

– Problem II ∞ for b 

∞
β(

ρβc p 
)
β

(
u β · ∇b 

∞
β + u 

′ 
β

)
= λβ∇ 

2 b 

∞
β

− α−1
β

N V ∑
p=1

g(x − x p ) v 
∞ 

βp , in the β-phase (105)

b 

∞ 

β = 0 , at A p , with 1 ≤ p ≤ N V (106)

Periodicity: b 

∞ 

β (x + r ) = b 

∞ 

β (x ) (107)

Average: 〈 b 

∞ 

β 〉 β = 0 (108)

where: 

v ∞ 

βp = −
∫ 

A p

n · λβ∇b 

∞ 

β d S (109)

A3. Memory effects closure problems 

– Problem I ∗
k

for s ∗
k

with 1 ≤ k ≤ N V (
ρβc p 

)
β

(
∂ t s 

∗
k + u β · ∇s ∗k + δ(t) s ∞ 

k 

)
= λβ∇ 

2 s ∗k

− α−1
β

N V ∑
p=1

g(x − x p ) A p h 

∗
pk , in the β-phase (110)

s ∗k = 1 − u (t) , at A k (111)

s ∗ = 0 , at A j with j � = k (112)
k 
eriodicity: s ∗k (x + r ) = s ∗k (x ) (113)

nitial condition: s ∗k = 0 , at t = 0 (114)

here: 

 

∗
pk = − 1

A p 

∫ 
A p

n · λβ∇s ∗k d S (115)

Problem II ∗ for b 

∗
β

ρβc p 
)
β

(
∂ t b 

∗
β + u β · ∇b 

∗
β + δ(t) s ∞j + ( 1 − u (t) ) u 

′ 
β

)
= λβ∇ 

2 b 

∗
β − α−1

β

N V ∑ 

p=1

g(x − x p ) v 
∗
βp , in the β-phase (116)

 

∗
β = 0 , at A p , 1 ≤ p ≤ N V (117)

eriodicity: b 

∗
β (x + r ) = b 

∗
β (x ) (118)

nitial condition: b 

∗
β = 0 , at t = 0 (119)

here: 

 

∗
βp = −

∫ 
A p

n · λβ∇b 

∗
β d S (120)

ppendix B. Definitions of the effective transport coefficients 

 ββ = αβλβ I + 〈 λβn βσ · b βδβσ 〉 − ( ρc p ) β〈 u 

′ 
βb β〉 (121)

 βp = ( ρc p ) β〈 s p u 

′ 
β〉 − 〈 λβs p n βσ δβσ 〉 (122)

 

∞ 

ββ = αβλβ I + 〈 λβn βσ · b 

∞ 

β δβσ 〉 − ( ρc p ) β〈 u 

′ 
βb 

∞ 

β 〉 (123)

 

∞ 

βp = ( ρc p ) β〈 s ∞ 

p u 

′ 
β〉 − 〈 λβs ∞ 

p n βσ δβσ 〉 (124)

 

∗
ββ = 〈 λβn βσ · b 

∗
βδβσ 〉 − ( ρc p ) β〈 u 

′ 
βb 

∗
β〉 (125)

 

∗
βp = 

(
ρβc p 

)
β
〈 s ∗p u 

′ 
β〉 − 〈 λβs ∗p n βσ δβσ 〉 (126)

ppendix C. Heat exchange coefficients for one-dimensional 

nit cells 

1. Quasi-steady closure problems 

The closure problems I ∞ 

k
for the mapping variables s ∞ 

k
with 1 ≤

k ≤ N V read for one-dimensional unit cells as 

 = 

d 2 s ∞ 

k 

dx ′ 2 − α−1
β

N V ∑ 

p=1

ˆ h 

∞ 

pk , in the β-phase (127)

 

∞ 

k = 1 , at x ′ = x k ± r k (128)

 

∞ 

k = 0 , at x ′ = x p ± r p with p � = k (129)

eriodicity: s ∞ 

k (x ′ + L ) = s ∞ 

k (x ′ ) (130)

verage: 〈 s ∞ 

k 〉 β = 0 (131)

here: 

ˆ 
 

∞ 

pk = 

ds ∞ 

k 
′ | (x p −r p ) − ds ∞ 

k 
′ | (x p + r p ) (132)
dx dx 
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he solutions of the closure problems for s ∞ 

k
can be calculated

rom the second order polynomial for each interval ] x ′ p ; x ′ p+1 [ 

 

∞ 

k = 

1 

2 

α−1 
β

N V ∑ 

p=1

ˆ h 

∞ 

pk x 
′ 2 + c j x 

′ + d j (133) 

y introducing the previous expression into the closure problems,

e obtain a linear system of 3 × 9 equations. The resolution of this

ystem allows us to determine all the polynomial coefficients. In-

roducing the solution in Eq. (132) leads to 

ˆ 
 

∞ 

pk = 

{
ˆ h 

∞ 

11 ; if p = k 

ˆ h 

∞ 

12 ; if p � = k 
(134) 

here ˆ h ∞ 

11 and 

ˆ h ∞ 

12 are defined as 

ˆ 
 

∞ 

11 = 

6

αβ
−

24 α2 
β

36 − αβ

(
38 − 3 

(
1 − αβ

)
αβ

) (135) 

ˆ 
 

∞ 

12 = − 3

αβ
−

24 α2 
β

36 − αβ

(
38 − 3 

(
1 − αβ

)
αβ

) (136) 

2. Memory effects closure problems 

Problem I ∗
k

for s ∗
k

with 1 ≤ k ≤ N V 

 t ′ s 
∗
k + δ(t ′ )s ∞k = ∇ 

′ 2 s ∗k − α−1
β

N V ∑ 

p=1

ˆ h 

∗
pk , in the β-phase (137) 

 

∗
k = 1 − u (t ′ ) , at A k (138) 

 

∗
k = 0 , at A j with j � = k (139) 

eriodicity: s ∗k (x ′ + L ) = s ∗k (x ′ ) (140) 

nitial condition: s ∗k = 0 , at t ′ = 0 (141) 

here: 

ˆ 
 

∗
pk = ∂ x ′ s 

∗
k | (x p −r p ) − ∂ x ′ s 

∗
k | (x p + r p ) (142) 

In Laplace space, the closure problem can be written as 

s 
∗
k + s ∞k = 

d 2 s 
∗
k

x ′ 2 − α−1
β

N V ∑ 

p=1

ˆ h 

∗
pk , in the β-phase (143) 

 

∗
k = 0 , at A p with 1 ≤ p ≤ N V (144) 

eriodicity: s 
∗
k (x ′ + L ) = s 

∗
k (x ′ ) (145) 

verage: 〈 s ∗k〉 β = 0 (146) 

here: 

ˆ 
 

∗
pk = 

d s 
∗
k 

dx ′ | (x p −r p ) −
d s 

∗
k 

dx ′ | (x p + r p ) (147) 

The solutions of those closure problems can be calculated

rom 

 

∗
k = c k e 

√ 

ξx ′ + d k e
√ 

ξx ′ − 1 

ξ
α−1 

β

N V ∑ 

p=1

ˆ h 

∗
pk

− α−1
β

(
1 

ξ 2 
+ x ′ 2 

2 ξ

)
N V ∑

p=1

ˆ h 

∞
pk − c k x 

′ + d k
ξ

(148) 

sing the same methodology as in the previous section, the heat

xchange coefficients ˆ h 
∗
pk can be rewritten as 

ˆ 
 

∗
pk = 

{
ˆ h 

∗
11 ; if p = k 

ˆ h 

∗
12 ; if p � = k 

(149) 
ˆ 
 

∗
11 = 

αβ( 3 coth (κ) + tanh (κ) ) 

18 κ
+ 

2 α4 
β

9 ( 1 − κ coth (κ) ) f (αβ ) 

− αβ

6 κ2 f (αβ ) 

(
36 − αβ

(
38 −

(
3 − 7 αβ

)
αβ

))
(150) 

ˆ 
 

∗
12 = 

8 α4 
β
κe −κ

36 ( κ − 1 ) f (αβ ) ( κ cosh (κ) − sinh (κ) ) 

− αβ( 3 coth (κ) + tanh (κ) )

36 κ

+ 

αβ

(
108 ( κ − 1 ) + αβ

(
1 − αβ

)(
114 − 9 αβ − 15 α2 

)
− 8 κα4 

β

)
36 ( κ − 1 ) κ2 f (αβ ) 

(151) 

here we have adopted the notations 

f (αβ ) = 36 − αβ

(
38 − 3 

(
1 − αβ

)
αβ

)
, κ2 = 

α2 
β

36 

ξ (152) 

ppendix D. Lumped coefficients for periodic micro-structure 

We define here the lumped mapping variable s ∞ by 

 

∞ = 

N V ∑ 

k =1

s ∞ 

k (153) 

umming up the quasi-steady closure problems for s ∞ 

k
, the closure

roblem for s ∞ reads 

 = λβ∇ 

2 s ∞ − α−1 
β

A p 

V 

N V ∑ 

p=1

h 

∞ 

p , in the β-phase (154) 

 

∞ = 1 , at A p 1 ≤ p ≤ N V (155) 

eriodicity: s ∞ (x + r ) = s ∞ (x ) (156) 

verage: 〈 s ∞ 〉 β = 0 (157) 

here: 

 

∞ 

p = 

N V ∑ 

k =1

h 

∞ 

pk = − 1

A p 

∫ 
A p

n · λβ∇s ∞ d S (158) 

ince the system illustrated in Fig. 1 is periodic in all directions,

he value of h ∞ 

p does not depend on the number of particles N V .
s a result h ∞ 

p can be calculated for a spatially periodic unit cell

hat contains solely one particle. 
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